Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Biodiversity and Metagenomics

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 27 Aug 2025 at 01:30 Created: 

Biodiversity and Metagenomics

If evolution is the only light in which biology makes sense, and if variation is the raw material upon which selection works, then variety is not merely the spice of life, it is the essence of life — the sine qua non without which life could not exist. To understand biology, one must understand its diversity. Historically, studies of biodiversity were directed primarily at the realm of multicellular eukaryotes, since few tools existed to allow the study of non-eukaryotes. Because metagenomics allows the study of intact microbial communities, without requiring individual cultures, it provides a tool for understanding this huge, hitherto invisible pool of biodiversity, whether it occurs in free-living communities or in commensal microbiomes associated with larger organisms.

Created with PubMed® Query: biodiversity metagenomics NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2025-08-26
CmpDate: 2025-08-26

Sharma P, Iqbal MZ, R Chandra (2025)

Bacterial allies in chromium hyperaccumulation: native rhizobacterial dynamics of profusely growing Dactyloctenium aegyptium in highly tainted tannery sludge.

World journal of microbiology & biotechnology, 41(9):314.

Tannery sludge has highly toxic heavy metals like chromium (Cr), posing environmental and health risks. This research investigates the potential of Dactyloctenium aegyptium (L.) Willd. and the associated rhizobacterial communities for bacterial-assisted phytoremediation of tannery sludge, having 6403.16 ± 0.71 mg/kg Cr. The analyses of culturable bacterial communities resulted in the exploration of two highly potent plant growth-promoting strains (CRB2 and CRB5), out of the six culturable strains obtained. SEM imaging depicted robust bacterial colonization on the plant root surface, confirming active plant-microbe interaction. D. aegyptium showed significant Cr accumulation (4936 ± 1.34 mg/kg) within the tissues, followed by substantial translocation to shoots and leaves (TF = 1.01). With a BCF of 1.66 for Cr, D. aegyptium bespeaks evident hyperaccumulation potential. TEM imaging revealed the granular metal deposition in the plant tissues. Post-plant growth, the sludge exhibited an 80.3% reduction in Cr concentration, alongside enhanced physicochemical properties (reduced pH, increased organic matter, reduced metal content). Furthermore, metagenomics analyses showed that the growth of D. aegyptium drastically changed rhizobacterial communities, decreasing species richness and increasing functional pathways associated with stress responses and metal tolerance. Important genes (copA, czcA, nirA), enzymes (dioxygenases, trimethylamine-N-oxide reductase), and proteins (CsgE, DsbG), essential for the nitrogen cycle, chromium detoxification, and plant-microbe associations, were found to be involved in metabolic pathways. The study amalgamates morphophysiological and advanced metagenomic approaches to put forth an understanding of species-specific plant-microbe interactions for the development of scalable and sustainable remediation and engineering of rhizospheric microbiomes for eco-restoration of heavy metal-polluted industrial sites.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Babalola OO, Ogundeji FO, AO Akanmu (2025)

Dataset of 16S rRNA and ITS gene amplicon sequencing of celery and parsley rhizosphere soils.

BMC genomic data, 26(1):60.

OBJECTIVES: This amplicon metagenomic study examines the relative abundance, taxonomic profiles and community structure of bacterial and fungal communities associated with the roots of parsley (Petroselinum crispum) and celery (Apium graveolens) under monocropping and intercropping systems. The study aims to provide a baseline understanding of how intercropping influences rhizosphere microbial dynamics.

DATA DESCRIPTION: The dataset provides insight into the effects of parsley-celery intercropping system on soil microbial richness, diversity and community structure. Amplicon metagenomic sequencing was performed on the DNA samples, targeting the 16S rRNA gene (V3-V4 region) and the ITS region for bacterial and fungal communities, respectively. The quantified libraries were pooled and sequenced using Illumina platforms, and the raw sequences were analyzed using the Quantitative Insights Into Microbial Ecology (QIIME 2 version 2019.1.) pipeline. The resulting Amplicon Sequence Variant (ASV) profiles revealed Actinobacteria and Protobacteria as the most predominant bacteria phyla, followed by Bacteroidota, Gemmatimonadota and Acidobacteriaota. The most predominant taxonomic distribution of fungi at the phylum level includes Ascomycota and Mortierellomycota. The dataset includes raw sequence reads in FASTQ format (.fastq.gz), which have been deposited in the Sequence Read Archive (SRA) of the National Center for Biotechnology Information (NCBI) under the Bioproject Accession numbers; SRP540554 (16S rRNA) and SRP540675 (ITS).

RevDate: 2025-08-26
CmpDate: 2025-08-26

Graeber E, Tysha A, Nisar A, et al (2025)

Shallow shotgun metagenomic sequencing of vaginal microbiomes with the Oxford Nanopore technology enables the reliable determination of vaginal community state types and broad community structures.

BMC microbiology, 25(1):544.

BACKGROUND: The vaginal microbiome plays an important role in female health; it is associated with reproductive success, susceptibility to sexually transmitted infections, and, importantly, the most prevalent vaginal condition in reproduction-age women, bacterial vaginosis (BV). Traditionally, 16S rRNA gene sequencing-based approaches have been used to characterize the composition of vaginal microbiomes, but shallow shotgun metagenomic sequencing (SMS) approaches, in particular when implemented with the Oxford Nanopore Technologies, have important potential advantages with respect to cost effectiveness, speed of data generation, and the availability of flexible multiplexing schemes.

RESULTS: Based on a study cohort of n = 52 women, of which 23 were diagnosed with BV, we evaluated the applicability of Nanopore-based SMS for the characterization of vaginal microbiomes in direct comparison to Illumina 16S-based sequencing. We observed perfect agreement between the two approaches with respect to detecting the dominance of individual samples by either Lactobacilli, vaginosis-associated, or other taxa; very high concordance (92%) with respect to community state type (CST) classification; and a high degree of concordance with respect to the overall clustering structures of the sequenced microbiomes. Comparing the inferred abundances of individual species in individual samples, we observed significant differences (Wilcoxon signed-rank test p < 0.05) between the two approaches for 12 of the 20 species most abundant in our cohort, indicating differences in the fine-scale characterization of vaginal microbiomes. Higher overall abundance of Gardnerella vaginalis, associated with an increased number of CST IV detections, in the Nanopore shallow SMS data indicated potentially increased sensitivity of this approach to dysbiotic states of the vaginal microbiome. Nanopore shallow SMS also enabled the methylation-based quantification of different human cell types in the characterized samples as well as the detection of non-prokaryotic species, including Lactobacillus phage and Candida albicans in study participants with microscopically detected Candida. One important potential limitation of the evaluated Nanopore-based SMS approach was marked variation in sequencing yields.

CONCLUSION: Our study demonstrated the successful application and potential advantages of Nanopore-based shallow SMS for the characterization of vaginal microbiomes and paves the way for its application in larger-scale research or diagnostic settings.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Kaelin EA, Mitchell C, Soria J, et al (2025)

Longitudinal cervicovaginal bacteriome and virome alterations associate with discordant shedding and ART duration in women living with HIV in Peru.

Nature communications, 16(1):7904.

Despite successful suppression of plasma HIV replication by antiretroviral therapy (ART), some women living with HIV (WLHIV) can still experience genital HIV shedding (discordant shedding). Female genital tract (FGT) bacterial and viral microbiome (bacteriome and virome) community dynamics during long-term ART in WLHIV are poorly understood but might contribute to discordant HIV shedding, as the bacteriome and virome are known to influence FGT health. Here, using metagenomic next-generation sequencing, we characterize the bacteriome and virome in 125 cervicovaginal specimens collected over two years from 31 WLHIV in Lima, Peru, and show that FGT bacteriome instability is associated with discordant HIV shedding, while longitudinal changes in FGT virome composition are associated with ART duration. Intrapersonal bacteriome variation is higher in discordant HIV shedders compared to non-shedders. Cervicovaginal virome composition changes over time, particularly in non-shedders. Specifically, anellovirus relative abundance is inversely associated with ART duration and CD4 counts. Our results suggest that discordant HIV shedding is linked with FGT bacteriome instability, and immune recovery during ART influences FGT virome composition.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Enciso Garcia JS, Chignola M, Ragionieri L, et al (2025)

High-Throughput Amplicon Sequencing for Analyzing Microbial Communities of Insects.

Methods in molecular biology (Clifton, N.J.), 2935:237-258.

Insects represent more than 80% of all described species on the planet. This diversity is a result of millions of years of evolution, during which insects have colonized nearly every habitat. Their success is partly due to their ability to form symbiotic relationships with a wide variety of other organisms, especially microorganisms. Identifying and characterizing associated microorganisms are crucial to understanding the complexity and dynamics of these symbiotic relationships. To date, advancements in sequencing technologies that provide large sequence data sets have become ideal tools for characterizing insect microbiomes, including information about non-cultivable microorganisms commonly found in insects. Despite the growing number of studies focused on insect microbiome characterization, there are few protocols detailing methodological procedures for fieldwork, DNA extraction, and data processing. Here, we present an overview of the characterization of insect-associated bacterial communities. We cover best practices for data interpretation and visualization, including alpha and beta diversity analyses, community composition profiling, and statistical testing to identify microbial associations of insects.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Dharmalingam D, Semalaiyappan J, Thirumal S, et al (2025)

Unveiling Facklamia: detection of an emerging microbe in the skin microbiome of patients with filarial lymphedema.

Frontiers in cellular and infection microbiology, 15:1624288.

Facklamia is an emerging pathogen in human beings and only a few clinical cases were reported in the literature. We detected the presence of this unusual microbe among the skin flora of three patients with filarial lymphedema in a 16S rRNA-based metagenomic study on the skin microbiome. To our knowledge, this is the first report of detection of this microbe in patients affected with filarial lymphedema. Further investigations are required to elucidate the role of Facklamia in secondary skin and soft tissue infection of filarial lymphedema patients.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Wu X, Zhu H, Hu Y, et al (2025)

Meta-analysis of H. pylori and the gut microbiome interactions and clinical outcomes.

Frontiers in cellular and infection microbiology, 15:1610523.

INTRODUCTION: Helicobacter pylori is a globally prevalent gastric pathogen associated with chronic gastritis, peptic ulcers, and gastric cancer. Its interaction with the gut microbiome (GM), a dynamic microbial community within the gastrointestinal tract, plays a critical role in modulating host immune responses and disease progression. This study aimed to investigate the complex interactions between H. pylori infection and the GM and to evaluate how microbiome alterations relate to clinical outcomes such as gastritis, ulcers, and gastric cancer.

METHODS: A meta-analysis was conducted using publicly available 16S rRNA and shotgun metagenomic datasets. Microbiome composition differences were assessed using differential abundance analysis, alpha- and beta-diversity metrics, and principal component analysis (PCA). Random forest models were employed to predict the clinical outcomes based on microbiome and clinical data. Hyperparameter tuning and cross-validation were applied to ensure model robustness.

RESULTS: The analysis revealed significant microbial shifts associated with H. pylori infection, including enrichment of Proteobacteria, Fusobacterium spp., and Prevotella spp., and depletion of beneficial taxa like Lactobacillus spp. and Faecalibacterium prausnitzii. Microbial diversity declined progressively with disease severity. Predictive models demonstrated high accuracy (89.3%) in classifying the disease states and identifying key microbial biomarkers such as Fusobacterium spp. and Bacteroides fragilis with strong predictive power.

DISCUSSION: This study highlights the critical role of GM dysbiosis in H. pylori-related disease progression. The identified microbial signatures and predictive models offer promising tools for early diagnosis, risk stratification, and personalized treatment of H. pylori-associated gastrointestinal disorders. Future integration of multi-omics data may further unravel the microbial mechanisms and support microbiome-based precision medicine.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Tang B, Li S, Li X, et al (2025)

Cholecystectomy-related gut microbiota dysbiosis exacerbates colorectal tumorigenesis.

Nature communications, 16(1):7638.

Cholecystectomy represents the most prevalent biliary surgical procedure for gallbladder abnormalities. Growing evidence suggests that cholecystectomy is associated with an elevated risk of colorectal cancer. However, the underlying mechanism remains elusive. Here we show that cholecystectomy exacerbates colorectal tumorigenesis in both AOM/DSS and APC[min/+] mice models. Metagenomic sequencing and targeted metabolomics show that cholecystectomy leads to a decrease of Bifidobacterium breve (B. breve) and an increase of Ruminococcus gnavus (R. gnavus), along with increased levels of glycoursodeoxycholic acid (GUDCA) in human and tauroursodeoxycholic acid (TUDCA) in mice. Fecal microbiota transplantation, single bacterial colonization and bile acid supplementation demonstrate that cholecystectomy-related gut microbiota perturbations promote the production of TUDCA and facilitate colorectal tumorigenesis. RNA-sequencing and co-immunoprecipitation reveal that the compromised bile acid metabolism inhibits farnesoid X receptor (FXR) signaling, disrupts the FXR/β-catenin interaction, and ultimately exacerbates colorectal tumorigenesis. Significantly, FXR agonist obeticholic acid (OCA) averts cholecystectomy-related colorectal tumorigenesis. The gut microbiota holds a crucial position in cholecystectomy-induced colorectal tumorigenesis, and modulation of the gut microbiota-bile acid-FXR axis represents a promising preventive strategy.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Kiu R, Darby EM, Alcon-Giner C, et al (2025)

Impact of early life antibiotic and probiotic treatment on gut microbiome and resistome of very-low-birth-weight preterm infants.

Nature communications, 16(1):7569.

Preterm infants (<37 weeks' gestation) are commonly given broad-spectrum antibiotics due to their risk of severe conditions like necrotising enterocolitis and sepsis. However, antibiotics can disrupt early-life gut microbiota development, potentially impairing gut immunity and colonisation resistance. Probiotics (e.g., certain Bifidobacterium strains) may help restore a healthy gut microbiota. In this study, we investigated the effects of probiotics and antibiotics on the gut microbiome and resistome in two unique cohorts of 34 very-low-birth-weight, human-milk-fed preterm infants - one of which received probiotics. Within each group, some infants received antibiotics (benzylpenicillin and/or gentamicin), while others did not. Using shotgun metagenomic sequencing on 92 longitudinal faecal samples, we reconstructed >300 metagenome-assembled genomes and obtained ~90 isolate genomes via targeted culturomics, allowing strain-level analysis. We also assessed ex vivo horizontal gene transfer (HGT) capacity of multidrug-resistant (MDR) Enterococcus using neonatal gut models. Here we show that probiotic supplementation significantly reduced antibiotic resistance gene prevalence, MDR pathogen load, and restored typical early-life microbiota profile. However, persistent MDR pathogens like Enterococcus, with high HGT potential, underscore the need for continued surveillance. Our findings underscore the complex interplay between antibiotics, probiotics, and HGT in shaping the neonatal microbiome and support further research into probiotics for antimicrobial stewardship in preterm populations.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Rakoff-Nahoum S, Debelius J, Valles-Colomer M, et al (2025)

A reconceptualized framework for human microbiome transmission in early life.

Nature communications, 16(1):7546.

Human development and physiology are fundamentally linked with the microbiome. This is particularly true during early life, a critical period for microbiome assembly and its impact on the host. Understanding microbial acquisition in early life is thus central to both our basic understanding of the human microbiome and strategies for disease prevention and treatment. Here, we review the historical approaches to categorize microbial transmission originating from the fields of infectious disease epidemiology and evolutionary biology and discuss how this lexicon has influenced our approach to studying the early-life microbiome, often leading to confusion and misinterpretation. We then present a conceptual framework to capture the multifaceted nature of human microbiome acquisition based on four key components: what, where, who, and when. We present ways these parameters may be assigned, with a particular focus on the 'transmitted strain' through metagenomics to capture these elements. We end with a discussion of approaches for implementing this framework toward defining each component of microbiome acquisition.

RevDate: 2025-08-26
CmpDate: 2025-08-26

An FJ, Niu ZR, Liu TN, et al (2025)

[Structure and Metabolic Function Characteristics of Soil Bacterial Communities under Different Vegetation Types in Arid Region].

Huan jing ke xue= Huanjing kexue, 46(8):5360-5368.

The aim of this study was to explore the effects of different vegetation types on soil bacterial community structure and metabolic function in an oasis-desert ecotone and provide scientific theoretical basis for species allocation and management of vegetation reconstruction in arid desert ecosystem. Nitraria sphaerocarpa Maxim and Calligonum mongolicum Turcz are the main natural vegetation, Haloxylon ammodendron Bunge, and Hedysarum scoparium Fisch are the primary artificial vegetation, and Ha-Cm are the main mixed community in an oasis-desert ecotone in northwest China. Understanding soil microbial community structure and function under typical vegetation types is crucial for accurate management and sustainable use of desert vegetation. We used high-throughput sequencing technology to explore the effects of different vegetation types on the structure, diversity, and metabolic pathways of soil bacteria and to investigate the key factors driving the change of soil bacterial community structure. The results showed that the growth of artificial vegetation and natural vegetation significantly increased the richness and diversity of the soil bacterial community, but no significant difference was observed. Metagenomic analysis showed that the same dominant bacterial phyla existed in all soils, but the proportions were different. Actinobacteriota, Proteobacteria, and Chloroflexi were the absolute dominant bacterial phyla, accounting for 65.12%-78.68% of the total bacteria. Principal co-ordinates analysis showed significant differences in soil bacterial community structure in the planted forest but similarities in the natural forest. The metabolic pathways of soil bacteria in different vegetation communities were similar. Soil organic carbon (SOC), available phosphorus (AP), and pH were important abiotic factors affecting the functional structure of bacteria. The findings are helpful for furthering the understanding of plant-soil interaction in ecologically fragile deserts.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Tričković M, Kieser S, Zdobnov EM, et al (2025)

Subspecies of the human gut microbiota carry implicit information for in-depth microbiome research.

Cell host & microbe, 33(8):1446-1458.e4.

Microbial strains within a single species can exhibit distinct functional characteristics due to variations in gene content and often show individual specificity, which can obscure unbiased associations and hinder deductive research. Here, we comprehensively define the human gut microbiota at a consistently annotated operational subspecies unit (OSU) resolution in an unbiased, cohort-independent manner, demonstrating that this approach can generalize across diverse global populations while maintaining specificity and improving interstudy reproducibility. We develop panhashome-a sketching-based method for rapid subspecies and species quantification and identification of genes that drive intraspecies variations-and show that subspecies carry implicit information undetectable at the species level. We identify subspecies associated with colorectal cancer (CRC) whose sibling subspecies or species are not, while a machine-learning CRC diagnostic algorithm based on subspecies outperformed species-level methods. This subspecies catalog allows identification of genes that drive functional differences between subspecies as a fundamental step in mechanistically understanding microbiome-phenotype interactions.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Frere Martiniuc C, de Assis Leite DC, Seldin L, et al (2025)

Viral Diversity in Polar Hydrocarbon-Contaminated Soils: A Transect Study from King George Island, Antarctica.

Food and environmental virology, 17(3):43.

Viruses are key components of soils, influencing microbial dynamics and biogeochemical cycles. Here, we used shotgun metagenomics to analyze the virome of hydrocarbon-contaminated and uncontaminated soils from King George Island, Antarctica. Viral sequences were obtained from metagenomes of all soils; however, the relative abundance of viruses was higher in hydrocarbon-contaminated soils compared to uncontaminated soils. Our results indicate that viral distribution correlates with polycyclic aromatic hydrocarbons (PAHs) in King George Island soil (p = 0.05). Taxonomic analysis of viral contigs revealed viruses from realms Duplodnaviria, Varidnaviria, Monodnaviria, and Riboviria. While Caudoviricetes (realm Duplodnaviria) represented more than 90% of the relative abundance of viruses found in hydrocarbon-contaminated soils, this class represented less than 62% of the viruses of uncontaminated soils. Most viral hosts detected in King George Island soils belonged to hydrocarbon-degrading bacterial genera from the phyla Pseudomonadota and Actinomycetota. Hydrocarbon contamination resulted in the enrichment of well-characterized viruses at the expense of previously uncharacterized viral taxa, which were predominantly detected in non-contaminated soils. Among them, Gordonia-related Stormageddonvirus was the most abundant viral entity identified in King George Island soil. Viral auxiliary metabolic genes (AMGs) associated with nitrogen and phosphate cycles were found in different Caudoviricetes-related contigs. Our results further indicate that Caudoviricetes abundance is correlated with the carbon: phosphate (C:P) ratio in King George Island soils. We propose the Caudoviricetes may actively contribute to microbial competition for phosphorus in hydrocarbon-contaminated soils. These findings shed light on the intricate interplay between viruses, microbial hosts, and environmental contamination in Antarctic soils.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Ni Z, Yanxi C, Lianqun J, et al (2025)

Huayu Qutan formula can improve platelet aggregation in acute coronary syndrome rats by regulating gut microbes to drive trimethylamine/flavin containing monooxygenase 3/trimethylamine N-oxide pathway.

Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan, 45(4):747-758.

OBJECTIVE: To investigate the effects of gut microbes regulation of the trimethylamine (TMA)/flavin containing monooxygenase 3 (FMO3)/trimethylamine N-oxide (TMAO) pathway on platelet aggregation in acute coronary syndrome (ACS) rats and the intervention of Huayu Qutan formula.

METHODS: The ACS rats with syndrome of phlegm and blood stasis rats were established. Platelet, platelet aggregation, platelet activation markers and TMA/FMO3/ TMAO pathway were detected. Metagenomics technology was employed to analyze the characteristics of the gut microbiota.

RESULTS: Huayu Qutan formula and gut microbes could inhibit high platelet reactivity and regulate the TMA/ FMO3/TMAO pathway. The dominant bacteria in ACS rats including but not limited to the major phyla, Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria, also including some low abundance phyla, Fusobacteria, Verrucomicrobia, Spirochaetes, and Deferribacteres. The dominant bacteria in the Huayu Qutan formula group were Synergistetes, Deferribacteres, Deferribacteraceae, Faecalibacterium and Mucispirillum. In the Huayu Qutan formula combined with fecal bacteria enema group, the dominant bacteria were Verrucomicrobia, Verrucomicrobiae, Akkermansia and Verrucomicrobium. These gut microbiota were correlated with pathways such as Riboflavin metabolism and Arachidonic acid metabolism.

CONCLUSION: Huayu Qutan formula may prevent ACS by modulating gut microbes Synergistetes, Faecalibacterium and Allobaculum, regulating the iron metabolism of Deferribacteres, and driving the TMA/FMO3/TMAO pathway to regulate gut microbiota function, and improving platelet aggregation. Akkermansia may serve as a promising probiotic, which could drive TMA/FMO3/ TMAO pathway to regulate Arachidonic acid metabolism to improve platelet aggregation. The findings of this study provide a theoretical basis for the theory of "the heart is connected with the small intestine".

RevDate: 2025-08-26
CmpDate: 2025-08-26

Ferhaoui N, Sebaihia M, Sekizuka T, et al (2025)

Shotgun Metagenomic Investigation of the Microbiome in Diabetic Foot Infections Compared to Healthy Skin.

Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society, 33(4):e70074.

Diabetic foot infection (DFI) is a major complication of diabetes, causing significant morbidity and mortality. Host factors and microorganisms in DFI can disrupt healing processes, leading to chronic, non-healing wounds. The aim of this study was to characterise the microbiome of DFIs and contralateral healthy foot skin (CHFS). Thirty-two diabetic patients were enrolled in this study. Samples were obtained from DFIs and CHFS from the same patient. The microbiome was profiled using metagenomic shotgun sequencing. All the samples were polymicrobial, with a predominance of the obligate anaerobes belonging to Bacteroidetes in PEDIS 4. While PEDIS 3 and 2 were dominated by Proteobacteria. CHFS showed similar bacterial composition across all grades of severity, and the most abundant genera detected were Corynebacterium, Staphylococcus, Pseudomonas, and Cutibacterium. The CHFS was more diverse than DFIs in PEDIS 3 and 4. However, DFIs and CHFS in PEDIS 2 present similar diversity. In addition, DFIs of this grade exhibited a high proportion of Corynebacterium as well as CHFS. PCoA analysis demonstrated that the community structure of DFIs was different from that of CHFS, with Prevotella, Bacteroides, and Porphyromonas the main contributors to the clustering. Neighbour-Net analyses revealed that DFIs exhibited lower diversity compared to CHFS and harboured a more homogeneous dominant bacterial community. Our study revealed a high abundance of obligate anaerobes, including Bacteroides, Prevotella, Morganella, and Porphyromonas, in more severe infections; along with a decrease in microbial diversity. Additionally, there was a decrease in the abundance of key bacteria from the normal skin microbiota.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Guo T, Chang L, Huang PW, et al (2025)

Investigating the mediating effect of plasma metabolites on the gut microbiome in influencing Behçet disease: A multi-omics validated Mendelian randomization study.

Medicine, 104(32):e42698.

Although an established correlation between gut microbiota (GM) and Behçet syndrome exists, the potential mediating involvement of plasma metabolites remains unclear. Using the most recent statistical data from genome-wide association studies conducted in 2024, we investigated the causal relationships between 473 GM taxa, 233 circulating metabolites, and Behçet syndrome (Behçet disease [BD]) through a 2-sample Mendelian randomization approach. This analysis was further supported by incorporating transcriptome and metagenomic data related to BD. A 2-step methodology was employed to evaluate the extent to which the effect of GM on BD is mediated through plasma metabolites. These results were subsequently validated in a separate validation set. Our Mendelian randomization results demonstrated correlations between various GM and the risk of Behçet syndrome. The potential link between GM and BD risk may be mediated through plasma circulating metabolite levels. Specifically, for every standard deviation, an increase in the abundance of Turicibacter sp001543345 was correlated with a 403% increase in BD risk (odds ratio : 5.03 [95% confidence interval, 1.77-14.25]). Meanwhile, the cholesteryl esters to total lipids ratio in large very low-density lipoprotein and the total cholesterol to total lipids ratio in very large very low-density lipoprotein increased by 4%. The proportion of indirect effects is 3.026% and 3.338%, respectively. Our study established a causal link between distinct GM and BD and quantified the proportion of effects mediated through plasma metabolites. These findings provide further insights for the treatment of BD.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Heber K, Tian S, Betancurt-Anzola D, et al (2025)

StrainR2 accurately deconvolutes strain-level abundances in synthetic microbial communities.

Bioinformatics (Oxford, England), 41(8):.

MOTIVATION: Synthetic microbial communities offer an opportunity to conduct reductionist research in tractable model systems. However, deriving abundances of highly related strains within these communities is currently unreliable. 16S rRNA gene sequencing does not resolve abundance at the strain level and other methods such as quantitative polymerase chain reaction (qPCR) scale poorly and are resource prohibitive for complex communities. We present StrainR2, which utilizes shotgun metagenomic sequencing to provide high accuracy strain-level abundances for all members of a synthetic community, provided their genomes.

RESULTS: Both in silico, and using sequencing data derived from gnotobiotic mice colonized with a synthetic fecal microbiota, StrainR2 resolves strain abundances with greater accuracy and efficiency than other tools utilizing shotgun metagenomic sequencing reads. We demonstrate that StrainR2's accuracy is comparable to that of qPCR on a subset of strains resolved using absolute quantification.

Software is available at GitHub and implemented in C, R, and Bash. Software is supported on Linux and MacOS, with packages available on Bioconda or as a Docker container. The source code at the time of publication is also available on figshare at the doi: 10.6084/m9.figshare.29420780.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Geng B, Zhu C, Cui Z, et al (2025)

Maslinic acid alleviates ulcerative colitis by inhibiting the colitis-aggravating pathogen Clostridium perfringens and modulating gut microbiota.

Phytomedicine : international journal of phytotherapy and phytopharmacology, 146:157144.

BACKGROUND: Ulcerative colitis (UC), a prevalent form of inflammatory bowel disease, continues to pose therapeutic challenges due to the limitations of conventional drugs and their inability to prevent relapse. Emerging evidence highlights the crucial role of gut microbiota dysbiosis in UC pathogenesis, yet our understanding of specific harmful microbes and their contributions to disease development remains limited.

PURPOSE: This study aims to (1) investigate the therapeutic potential of maslinic acid (MA), a food-derived natural compound, in colitis mice models; (2) elucidate the previously underestimated pathogenic role of Clostridium perfringens in UC development; and (3) reveal the molecular mechanisms underlying both C. perfringens pathogenesis and MA-mediated protection.

METHODS: We examined the therapeutic effect of MA using DSS-induced colitis model and performing metagenomic sequencing; elucidated the pathogenic role of C. perfringens using GMrepo database, clinical stool samples, and in vivo infection models. Additionally, we revealed its mechanism using inhibitors and markers of various cell death and inflammation pathways. The bactericidal effect of MA on C. perfringens was studied through in vitro experiments and two in vivo colitis models.

RESULTS: MA alleviates DSS-induced colitis and restores gut microbiota. C. perfringens is enriched following DSS administration while significantly decreased after treatment with MA. C. perfringens contributes to the development of colitis and induces ZBP1-mediated PANoptosis in intestinal epithelial cells, while stimulates inflammation through NOD2 activation. MA has direct bactericidal activity against C. perfringens through ROS induction. It can almost completely rescue the exacerbation of colitis-related pathological and physiological phenotypes caused by C. perfringens in two mice colitis models.

CONCLUSIONS: Our study reveals that MA effectively mitigates DSS-induced colitis by inhibiting the colitis-aggravating pathogen C. perfringens and modulating gut microbiota. Furthermore, it elucidates the previously underestimated role and mechanism of C. perfringens in the development of UC. It also highlights the therapeutic potential of MA in preventing and treating UC, particularly in patients who are C. perfringens positive.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Liu WS, Liu CD, Liu C, et al (2025)

Microbial Phosphate Solubilization Promotes Rare Earth Element Accumulation in the Hyperaccumulator Dicranopteris linearis from China.

Environmental science & technology, 59(32):17092-17102.

Plant and rhizosphere soil samples of the rare earth element (REE) hyperaccumulator plant Dicranopteris linearis were collected across tropical and subtropical China to elucidate how rhizosphere microbiota drive soil REE solubilization and accumulation in this species. The results show that this facultative REE hyperaccumulator species grows under severe phosphorus deficiency conditions, with soil available phosphorus concentrations ∼2 mg kg[-1] and a leaf nitrogen-to-phosphorus ratio >20. The core rhizosphere microbiota comprise 111 OTUs (occupancy >95%, relative abundance >0.1%), with community structure primarily correlated with soil phosphorus availability, rather than with geographical location or climatic variables. Foliar phosphorus and REE concentrations are positively associated with soil total phosphorus concentrations and glucose dehydrogenase (GCD) gene abundance─a key biomarker of microbial phosphate solubilization activity─but exhibit no significant association with soil available phosphorus or soil extractable REE concentrations. Combined 16S rRNA sequencing and metagenomic analyses further reveal abundant phosphate-solubilizing microbes within the core microbiome. These results show that REE mineral weathering in the rhizosphere soil and subsequent accumulation in D. linearis are side effects of phosphate solubilization promoted by the rhizosphere microbiome under phosphorus deficiency conditions.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Liang M, Wu WJ, Li L, et al (2025)

Characteristics of the microbiota in the nasopharynx and nasal cavity of healthy children before and during the COVID-19 pandemic.

World journal of pediatrics : WJP, 21(8):836-845.

BACKGROUND: Microbial colonization in the nasopharynx and nasal cavity plays a defensive role in children. The coronavirus disease 2019 (COVID-19) pandemic may have an influence on the nasopharynx and nasal cavity microbiota. This study aimed to identify and compare the microbiota in the nasopharynx and nasal cavity before and during the COVID-19 pandemic in a healthy pediatric population.

METHODS: Separate mucosal swabs were collected from the nasopharynx and nasal cavity of healthy children before and during the COVID-19 pandemic. A 16S ribosomal RNA-based metagenomic approach was employed to characterize and analyze alterations in the nasopharyngeal and nasal microbiota to determine whether isolation measures, such as mask wearing, influence microbial ecology.

RESULTS: The richness and diversity of the nasopharyngeal and nasal microbiota decreased during the COVID-19 pandemic compared with before the pandemic. Firmicutes and Proteobacteria were the most abundant phyla in the nasopharyngeal and nasal microbiota, respectively, both before and during the pandemic. Corynebacterium and Moraxella were the dominant genera in the nasopharyngeal and nasal microbiota during the COVID-19 pandemic, whereas Pseudomonas and Corynebacterium were dominant before the pandemic. Compared with pre-pandemic conditions, microbial colonization differed significantly for Cyanobacteria/Chloroplast and Bacteroidetes in the nasopharynx and for Planctomycetes in the nasal cavity during the COVID-19 pandemic.

CONCLUSIONS: This study revealed a lower microbiota diversity during COVID-19, possibly accompanied by microbiota dysbiosis, increased risk of respiratory infections and inflammatory responses in healthy children. This study underscores the importance of reestablishing microbiota balance and highlights the need for personalized treatment and prophylactic strategies in routine public health practice. Supplementary file3 (MP4 150533 KB).

RevDate: 2025-08-26
CmpDate: 2025-08-26

Che Y, Han J, Harkins CP, et al (2025)

Restoration of the human skin microbiome following immune recovery after hematopoietic stem cell transplantation.

Cell host & microbe, 33(8):1412-1427.e5.

The human skin microbiome is intricately intertwined with host immunity. While studies have elucidated microbial influences on immunity, understanding how immune alterations modulate this equilibrium remains limited. We investigated the dual impact of immune deficiency and hematopoietic stem cell transplantation (HSCT) on the skin microbiome in 24 patients with dedicator of cytokinesis 8 (DOCK8) deficiency, a rare inborn error of immunity. Analyzing 590 metagenomic and 534 16S rDNA sequencing samples across eight skin sites, we observed disrupted microbiota pre-HSCT (median eukaryotic viruses 67.6% vs. 0.04% in controls), with extremely diverse human papillomaviruses (HPVs) and polyomaviruses-including oncogenic viruses. Specific bacterial species markedly changed, including decreased Staphylococcus aureus post-HSCT. DNA eukaryotic viruses dramatically decreased (79.7% ± 28.3% to 4.9% ± 8.6%; p < 0.01) 12 months post-HSCT. Recovered microbial communities remained relatively stable through 1-year follow-up with clearance of oncogenic HPV and no convergence with transplant donors. These results highlight the immune system's critical role in restoring microbial balance and skin health.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Tang J, JL Baker (2025)

The salivary virome during childhood dental caries.

mSphere, 10(8):e0019825.

While many studies have examined the bacterial taxa associated with dental caries, the most common chronic infectious disease, little is known about the caries-associated virome. In this study, the salivary viromes of 21 children with severe caries (>2 dentin lesions) and 23 children with healthy dentition were examined. A total of 2,485 viral metagenome-assembled genomes (vMAGs) were identified, binned, and quantified from the metagenomic assemblies. These vMAGs were mostly phages and represented 1,865 unique species-level viral operational taxonomic units (vOTUs), of which 478 appear to be novel. The metagenomes were also queried for all 3,858 unique species-level vOTUs of DNA viruses with a human host on NCBI Virus; however, all but Human betaherpesvirus 7 were at very low abundance in the saliva. The oral viromes of the children with caries exhibited significantly different beta diversity compared to the oral virome of the children with healthy dentition; several vOTUs predicted to infect Haemophilus and Neisseria were strongly correlated with health, and five vOTUs predicted to infect Saccharibacteria, Prevotella, and Veillonella were correlated with caries. Co-occurrence analysis indicated that the phage typically co-occurred with both their predicted hosts and with bacteria that were themselves associated with the same disease status. Overall, this study provided the sequences of 35 complete or nearly complete novel oral phages and illustrated the potential significance of the oral virome in the context of dental caries, which has been largely overlooked. This work represents an important step toward the identification and study of phage therapy candidates that treat or prevent caries pathogenesis.IMPORTANCEDental caries is the most common chronic infectious disease worldwide and is caused by dysbiosis of the oral microbiome featuring an increased abundance of acid-tolerant, acid-producing, and biofilm-forming bacteria. The oral microbiome also contains viruses; however, very little is known about the caries-associated virome. In this study, the salivary virome of children with severe caries was compared to the salivary virome of children with healthy dentition. The metagenomes contained a total of 1,865 unique species-level viral operational taxonomic units (vOTUs), of which 478 appeared to be novel. The viromes from the children with caries were significantly different than the viromes from the children with healthy teeth, and several health- and disease-associated vOTUs were identified. This study illustrated the potential importance of the oral virome in the context of dental caries and serves as a step towards a better understanding of oral inter-kingdom interactions and identification of potential phage-based caries therapeutics.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Huang C, Wang T, Chen W, et al (2025)

Sheep and rapeseed cake manure promote antibiotic resistome in agricultural soil.

Journal of hazardous materials, 495:139157.

The application of manure in agriculture caused the emergence and spread of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in soil environments. However, the co-occurrence pattern and host diversity of ARGs and MGEs in soils amended with animal and green manures remains unclear. In this study, metagenomic assembly and binning techniques were employed to comprehensively explore the effects of sheep manure and green manure on soil microbiome, antibiotic resistomes, and ARG hosts. Both rapeseed cake manure and sheep manure increased the abundance and diversity of ARGs, with sheep manure particularly enhancing the abundance of ARGs conferring resistant to multidrug, quinolone, rifampicin, and macrolide-lincosamide-streptogramin (MLSB). Mobile genetic elements (MGEs), such as plasmids, transposases, and integrases, preferentially enhanced the potential mobility of some ARGs subtypes (i.e. sul2, aadA, qacH, and folp), facilitating the spread of ARGs. Additionally, sheep manure reshaped the bacterial community structure and composition as well as ARG hosts, some opportunistic pathogens (i.e. Staphylococcus, Streptococcus, and Pantoea) acquired antibiotic resistance and remained recalcitrant. It is concluded that rapeseed cake manure and sheep manure increased the co-occurrence of ARGs and MGEs, enriched the potential ARG hosts, and promoted the dissemination of ARGs in agricultural soils.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Lee CE, Messer LF, Wattiez R, et al (2025)

The invisible threats of sunscreen as a plastic co-pollutant: Impact of a common organic UV filter on biofilm formation and metabolic function in the nascent marine plastisphere.

Journal of hazardous materials, 495:139103.

Plastic debris in marine environments serves as a substrate for microbial colonisation, forming biofilms known as 'plastispheres'. Also accumulated on plastic debris are co-pollutants including UV-protective organic UV-filters from sunscreens, which likely interact with this niche through their lipophilicity. Despite their widespread use and environmental accumulation, the influence of UV-filters on plastisphere composition and function has never been investigated. This study therefore investigates, for the first time, how co-pollution - specifically by an organic UV-filter - impacts the composition and function of marine plastisphere communities. To achieve this, low-density polyethylene (LDPE) was incubated with marine microbial communities for six days to cultivate a nascent plastisphere, which was then exposed to 5 mg/L of EthylHexyl MethoxyCinnamate (EHMC); the most used organic UV-filter in sunscreens, and a prevalent marine pollutant. Metagenomic analyses revealed that EHMC favoured the growth of bacterial generalists Pseudomonas and Psychromonas while reducing pollutant-degrading genera like Marinomonas. Analysis of 3070 proteins revealed a consistent upregulation of proteins used for biofilm maintenance by Pseudomonas with EHMC exposure, including the considerable upregulation of outer membrane porin F (OprF) which regulates exopolymeric substance (EPS) production. Additionally, proteins thought to indicate a shift from aerobic to anaerobic respiration were frequently expressed after exposure to EHMC. This may have selected against the obligate aerobes Marinomonas and Pseudoalteromonas, contributing to the observed shift in community composition. These findings underscore the importance of considering chemical co-pollutants in plastisphere research as we now begin to discover how ecologically significant, and potentially harmful microbial genera are affected by this interaction.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Bonham KS, Margolis ET, Fahur Bottino G, et al (2025)

Codevelopment of gut microbial metabolism and visual neural circuitry over human infancy.

mBio, 16(8):e0083525.

Infancy is a time of elevated neuroplasticity supporting rapid brain and sensory development. The gut microbiome, also undergoing extensive developmental changes in early life, may influence brain development through the metabolism of neuroactive compounds. Here, we leverage longitudinal data from 194 South African infants across the first 18 months of life to show that microbial genes encoding enzymes that metabolize molecules playing a key role in modulating early neuroplasticity are associated with visual cortical neurodevelopment, measured by the Visual-Evoked Potential (VEP). Neuroactive compounds included neurotransmitters GABA and glutamate, the amino acid tryptophan, and short-chain fatty acids involved in myelination, including acetate and butyrate. Microbial gene sets around 4 months of age were strongly associated with the VEP from around 9-14 months of age and showed more associations than concurrently measured gene sets, suggesting that microbial metabolism in early life may affect subsequent neural plasticity and development.IMPORTANCEOver the past decade, extensive research has revealed strong links between the gut microbiome and the brain, at least in adults or those with neuropsychiatric disorders. This study explores how these associations emerge in early development using a longitudinal sample of 194 infants with repeated microbiome metabolism and electroencephalography (EEG) measures during the critical early period of visual cortex neuroplasticity. We examined microbial genes encoding enzymes for neuroactive compounds (e.g., GABA, glutamate, tryptophan, and short-chain fatty acids) and their association with the visual-evoked potential (VEP). Genes from 4-month stool samples strongly correlated with VEP features between 9 and 14 months, suggesting that early microbial metabolism influences later visual neurodevelopment. These prospective associations were more numerous than the concurrent ones. Our findings suggest that early gut microbiome metabolic potential plays a crucial role in shaping neural plasticity and visual neurodevelopment.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Du S, Tang H, Wang Z, et al (2025)

Children's home environments as reservoirs of antimicrobial resistance: Divergent urban-rural risks from antibiotic resistance genes and pathogens.

Journal of hazardous materials, 495:139053.

Antibiotic resistance genes(ARGs) and pathogens pose a global health challenge, particularly for vulnerable children. However, limited knowledge is on their existence in home environments where children spend majority of time, even less on urban-rural differences. We collected settled dust from children's homes in urban(n = 31) and rural (n = 34) areas of Shanghai, China, and analyzed microbiomes, ARGs and pathogens through metagenomic sequencing. Home dust microbial compositions differed significantly between urban and rural environment. ARGs were widely detected in home environment (rural:758 subtypes; urban:733). Significant urban-rural differences were also observed in ARGs and pathogens composition, diversity, co-occurrence patterns, assembly processes and drivers. Specifically, rural dust was enriched with more differentially abundant ARG subtypes. Urban dust was enriched with clinically critical multidrug-resistant pathogens (e.g. Acinetobacter baumannii), contrasting with rural areas enriched in plant-associated pathogens. Stochastic processes dominated the assembly of ARGs and pathogens, while environmental factors partially explained their variations. Temperature was positively associated with total ARG abundance in both areas. Residential greenness had a positive relationship with ARG abundance in rural but negative in urban settings. Our findings indicated children's homes as reservoirs of antimicrobial resistance, urging vigilance against rural ARG enrichment and urban multidrug-resistant pathogen risks for pediatric health.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Li YQ, Zhang CM, Ma H, et al (2025)

Antiallergic drugs drive the alteration of microbial community and antibiotic resistome in surface waters: A metagenomic perspective.

Journal of hazardous materials, 495:139028.

Antiallergic drugs (AADs) are emerging contaminants of global concern due to their environmental persistence and potential ecological impacts. This study investigated the effects of seven AADs (chlorpheniramine, diphenhydramine, cetirizine, loratadine, desloratadine, sodium cromoglicate and calcium gluconate) at environmentally relevant concentrations on antibiotic resistome and bacterial community structures in water using microcosm experiments and metagenomic sequencing. The results showed that AADs increased the abundance of antibiotic-resistant bacteria (ARB) by 1.24- to 7.78-fold. Community structure shifts indicated that chlorpheniramine, diphenhydramine, and cetirizine promoted Actinobacteria (e.g., Aurantimicrobium), while the other four AADs favored Proteobacteria (e.g., Limnohabitans). AADs also significantly altered the relative abundance of antibiotic resistance genes (ARGs), with Actinobacteria and Proteobacteria identified as key ARB components and potential hosts of ARGs (e.g., evgS, mtrA, RanA). Host analysis showed ARGs were primarily carried by Actinobacteria (e.g., Aurantimicrobium) under chlorpheniramine, diphenhydramine, and cetirizine exposure, but by Proteobacteria (e.g., Limnohabitans) under the other four AADs. Furthermore, AADs facilitated the horizontal transfer of ARGs (e.g., evgS) within microbial communities, contributing to antibiotic resistance dissemination. This study highlights the ecological risks of AADs in promoting antibiotic resistance spread and provides new insights into their impact on microbial communities and resistome dynamics in aquatic environments.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Ghosh S, Nath S, Chakraborty A, et al (2025)

Long-term arsenic exposure perturbs gut microbial diversity, composition and predicts metabolic dysregulation.

Journal of hazardous materials, 495:138836.

The present study documents significant alterations in human gut microbial composition in arsenic exposed populations of West Bengal, India through amplicon sequencing of human stool metagenomic DNA. A notable reduction in α-diversity underscored a reduced species richness and an altered predominance. β- diversity analysis revealed prominent inter-individual differences. Among the 26 phyla detected, significant perturbation was noted in Bacteroidetes, Actinobacteria, Proteobacteria, and Firmicutes. Species analysis identified significant increase in Bifidobacterium adolescentis, B.longum, Blautia luti, B.wexlerae, Clostridium saudiense, Romboutsia timonensis and Streptococcus salivarius whereas members of Faecalibacterium prausnitzii, Megasphaera elsdenii, Prevotella copri and P. stercorea were found to be highly diminished due to As stress. PICRUSt analysis predicted significant upregulation (pT-test< 0.05) in gene families associated with carbohydrate, amino acid, nucleotide and lipid metabolism along with fermentation and secondary metabolite/ vitamin synthesis pathways in exposed group confirmed through Linear Discriminant Analysis. B.longum, B.luti and S.salivarius were found to be associated with obesity and ulcerative colitis. Network interactions were also characterized with major disruptions in keystone species interaction. The major findings of this study shall drive future studies like community-based metagenomics, metabolomics and in-vitro microbial verifications for designing of microbial therapeutics targeting gut health to combat the harmful impact of As exposure.

RevDate: 2025-08-25

Philip M, Nilsen T, Majaneva S, et al (2025)

A Targeted Reference Database for Improved Analysis of Environmental 16S rRNA Oxford Nanopore Sequencing Data.

Molecular ecology resources [Epub ahead of print].

The Oxford Nanopore Technologies (ONT) sequencing platform is compact and efficient, making it suitable for rapid biodiversity assessments in remote areas. Despite its long reads, ONT has a higher error rate compared to other platforms; necessitating high-quality reference databases for accurate taxonomic assignments. However, the absence of targeted databases for underexplored habitats, such as the seafloor, limits ONT's broader applicability for exploratory analysis. To address this, we propose an approach for building environmentally targeted databases to improve 16S rRNA gene (16S) analysis using Oxford Nanopore Technologies (ONT), using seafloor sediment samples from the Norwegian coast as an example. We started by using Illumina short-read data to create a database of full-length or near full-length 16S sequences from seafloor samples. Initially, amplicons are mapped to the SILVA database, with matches added to our database. Unmatched amplicons are reconstructed using METASEED and Barrnap methodologies with amplicon and metagenome data. Finally, if the previous strategies did not succeed, we included the short-read sequences in the database. This resulted in AQUAeD-DB, which contains 14,545 16S sequences clustered at 95% identity. Comparative database analysis reveals that AQUAeD-DB provides consistent results for both Illumina and Nanopore read assignments (median correlation coefficient: 0.50), whereas a standard database showed a substantially weaker correlation. These findings also emphasise its potential to recognise both high and low abundance taxa, which could be key indicators in environmental studies. This work highlights the necessity of targeted databases for environmental analysis, especially for ONT-based studies, and lays the foundations for future extension of the database.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Park JD, Lee SR, Dhennezel C, et al (2025)

Elucidating the role of Campylobacter concisus-derived indole metabolites in gut inflammation and immune modulation.

Proceedings of the National Academy of Sciences of the United States of America, 122(34):e2514071122.

The gut microbiota plays a pivotal role in maintaining human health with dysbiosis linked to a variety of diseases. Metagenome sequencing and robust statistical analysis have linked specific strains, including the gut bacterium Campylobacter concisus, to Crohn's disease and ulcerative colitis, together known as inflammatory bowel disease (IBD). However, the roles of this and other strains in disease progression remain to be investigated. Herein, we assess the contribution of C. concisus secondary metabolites to inflammation. Through untargeted metabolomics, we identified a diverse array of nineteen indole-containing metabolites produced by C. concisus, including trisindoline, previously isolated from a marine bacterium. Collectively, these metabolites modulate inflammatory responses by significantly inducing the release of proinflammatory cytokines interleukin (IL)-1β, IL-6, IL-8, and MCP-1. The metabolites act through the aromatic hydrocarbon receptor arylhydrocarbon receptor and in vivo intravital imaging revealed a marked increase in the recruitment and activation of immune cells, specifically neutrophils and macrophages, following the administration of trisindoline. Several indole metabolites also exhibited antimicrobial activity against commensal strains that facilitate a proper immune response. Our study provides a possible rationale for the association of C. concisus with IBD and underscores the complex interplay between gut bacteria and host immunity. The identification of indole-derived secondary metabolites as key modulators of inflammation offers new avenues for therapeutic intervention.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Star-Shirko B, Pangga GM, McKenna A, et al (2025)

Investigating microbial population structure and function in the chicken caeca and large intestine over time using metagenomics.

BMC research notes, 18(1):355.

OBJECTIVES: Although taxonomic variations in chicken gut microbiota have been previously documented, their functional capacity remain poorly understood. To gain a better understanding, we incorporated whole genome shotgun metagenomics to analyse microbial communities of two different organs: the caeca and the large intestine.

RESULTS: Using 24 samples obtained from the caeca and the large intestine of commercial chickens, we assembled Metagenome-Assembled Genomes (MAGs) and characterise their functional profiles. Afterwards, using 8 samples, we integrated this sequencing data with chicken performance metadata body weight (BW), weight gain, feed intake (FI), feed conversion ratio (FCR) and age. MAGs belonging to specific families were found to be positively associated with changes in performance parameters. Functional analyses suggest changes in nutrient geochemical cycles including hydrogen generation within the carbon-cycle. Furthermore, 108 CAZymes were identified for MAGs belonging to two major families - glycoside hydrolase (GH) and polysaccharide lyase (PL), which are important for breakdown of dietary carbohydrates and fibres. A total of 13 polysaccharide lyases were identified functioning on day 20 with enzymes were specific to organs. Overall, our results provide a deeper understanding of microbial-mediated metabolism concerning key performance parameters in chicken production.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Yang JX, Peng Y, Yang JJ, et al (2025)

Nitrogen addition alters arbuscular mycorrhizal fungi and soil bacteria networks without promoting phosphorus mineralization in a semiarid grassland.

Communications biology, 8(1):1229.

Mycorrhiza interplays with the microbiome in adaptation to environmental fluctuation, yet how arbuscular mycorrhizal fungi (AMF) and the associated microbiome respond to nitrogen addition remains poorly understood. Here, we addressed this gap by conducting amplicon sequencing of AMF 18S rRNA and bacterial 16S rRNA operons, along with shotgun metagenome sequencing, using soil samples collected from a semiarid grassland that has received nitrogen inputs for 11 years at different levels. We found that the nitrogen response of the AMF community was characterized by a negative association whereby increasing nitrogen addition leads to higher beta diversity and lower alpha diversity. Multiple co-inertia analyses revealed a coordinated response of the AMF community, bacterial community, and bacterial functions to nitrogen addition, which as a whole was strongly related to soil phosphorus availability. Besides, through network analysis of AMF with bacteria and bacterial functional genes, we found that nitrogen addition selected Actinobacteria and enriched functions of transporters, amino acid synthesis and metabolism, and replication repair, whereas there was no evidence for the enrichment of phosphorus mineralization functions.

RevDate: 2025-08-25
CmpDate: 2025-08-25

Rashwan HH, Ali MH, Mostafa MM, et al (2025)

Insights into the tripartite relationship between cervical cancer, human papillomavirus, and the vaginal microbiome: a mega-analysis.

Human genomics, 19(1):89.

BACKGROUND: Cervical cancer (CC) is the fourth most prevalent malignancy among women worldwide, where 99.7% of the cases are linked to persistent human papillomavirus (HPV) infections. While emerging evidence suggests a role for vaginal microbiome dysbiosis in HPV-driven CC, the specific microbial alterations and their functional implications remain unclear. However, inconsistencies in identifying specific microbial signatures-largely due to heterogeneous study designs, targeted 16S rRNA regions, and data processing methods-have limited the generalizability of existing findings. To address these challenges, we conducted a standardized mega-analysis using a compositionality-aware approach to ensure consistency and minimize technical bias across studies.

RESULTS: Our mega-analysis consolidates findings from five case-control 16S rRNA ampilicon sequencing studies, encompassing 215 samples. Compared to healthy controls, CC patients exhibited significantly higher alpha diversity (Shannon index, p <0.005) and a shift from a Lactobacillus-dominant to a polymicrobial vaginal microbiome. This microbial dysbiosis was characterized by an increased abundance of Porphyromonadaceae, particularly Porphyromonas asaccharolytica, and other anaerobic bacterial species such as Campylobacter ureolyticus, Peptococcus niger, and Anaerococcus obesiensis (FDR <0.05). Functional profiling of the altered microbiome revealed enrichment in pathways associated with chronic inflammation, fatty acid biosynthesis, amino acid metabolism, cellular proliferation, invasion, and metastasis.

CONCLUSIONS: This mega-analysis presents the most methodologically homogeneous study to date of CC-associated vaginal microbiome using publicly available 16S datasets. Our findings not only deepen our understanding of microbial influences on CC but also pave the way for novel diagnostic and therapeutic approaches potentially enhancing patient outcomes in CC care. These insights open new avenues for clinical interventions that extend beyond conventional HPV-centric strategies.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Pan S, Du H, Zheng R, et al (2025)

A holistic genome dataset of bacteria and archaea of mangrove sediments.

GigaScience, 14:.

BACKGROUND: Mangroves are one of the most productive marine ecosystems with high ecosystem service value. The sediment microbial communities contribute to pivotal ecological functions in mangrove ecosystems. However, the study of mangrove sediment microbiomes is limited.

FINDINGS: Here, we applied metagenome sequencing analysis of microbial communities in mangrove sediments across Southeast China from 2014 to 2020. This genome dataset includes 966 metagenome-assembled genomes with ≥50% completeness and ≤10% contamination generated from 6 groups of samples. Phylogenomic analysis and taxonomy classification show that mangrove sediments are inhabited by microbial communities with high species diversity. Thermoplasmatota, Thermoproteota, and Asgardarchaeota in archaea, as well as Proteobacteria, Desulfobacterota, Chloroflexota, Acidobacteriota, and Gemmatimonadota in bacteria, dominate the mangrove sediments across Southeast China. Functional analyses suggest that the microbial communities may contribute to carbon, nitrogen, and sulfur cycling in mangrove sediments.

CONCLUSIONS: These combined microbial genomes provide an important complement of global mangrove genome datasets and may serve as a foundational resource for enhancing our understanding of the composition and functions of mangrove sediment microbiomes.

RevDate: 2025-08-25
CmpDate: 2025-08-25

Kannan EP, Venkatachalam P, Gopal J, et al (2025)

Temporal shift of bacterial communities in poultry litter during the course of broiler chicken rearing: a 16S rRNA-based metagenomic study.

Journal of applied microbiology, 136(8):.

AIM: To decipher the bacterial community transitions of poultry litter at various time frames over a 6-week rearing cycle in a commercial broiler chicken poultry farm in Marakanam, Tamil Nadu, India.

METHODS AND RESULTS: The bacterial consortia of poultry litter were elucidated using the 16S rRNA-based metagenomic Oxford nanopore sequencing method, followed by taxonomic assignment using the Kraken2 tool. Our findings unveiled the varied dominance patterns of bacteria in poultry litter (P1-P6) with Sphingobacterium sp. 21 (53%) in P1, Amphibacillus xylanus dominated in P2 (∼12%), Oceanimonas sp. GK1 in P3 (∼14%) and P6 (>50%), Anaerococcus prevotii in P4 (∼10%) and Marinobacter hydrocarbonoclasticus (∼15%) in P5. Importantly various bacteria involved in key biogeochemical cycles, including Nitrosomonas eutropha (nitrogen cycle), Bacillus subtilis (phosphorous cycle), and Acidithiobacillus caldus (sulphur cycle) were detected indicating a strong potential of utilizing the poultry litter as an effective biofertilizer. On the other hand, harmful human pathogens, including Mycobacterium tuberculosis, Escherichia coli, Salmonella enterica, and Streptococcus pneumoniae were also detected indicating significant public health concern associated with the application of poultry litter as fertilizer.

CONCLUSIONS: This study offers knowledge to both leverage the usefulness of poultry litter as biofertilizer and to mitigate transmission of harmful pathogens harboured by poultry litter.

RevDate: 2025-08-25
CmpDate: 2025-08-25

Bradley ES, Stansky C, Zeamer AL, et al (2025)

The urinary microbiome distinguishes symptomatic urinary tract infection from asymptomatic older adult patients presenting to the emergency department.

Virulence, 16(1):2546063.

Older adults suffer from a high rate of asymptomatic bacteriuria (ASB), in which urinalysis may appear positive (presence of bacteria, white blood cells, and nitrates), often triggering initiation of antibiotics in acute care settings, without actual urinary tract infection (UTI) present. To investigate the urinary microbiome of older adults being tested for UTI, we enrolled a convenience sample of 250 older adult Emergency Department patients who had microscopic urinalysis ordered as part of their routine clinical care. Urinalysis results were classified as positive or negative, and patients were classified as being symptomatic or asymptomatic based on established diagnostic guidelines. We sought to determine if features of the urinary microbiome differed between positive and negative urinalysis (UAs) and symptomatic and asymptomatic patients with positive UAs. The same urine sample used for clinical testing was sequenced and analyzed for bacterial taxa, metabolic pathways, and known bacterial virulence factors. After exclusion of anatomical abnormalities and filtering for sequencing quality, 152 samples were analyzed (5 negative UAs, 147 positive UAs, among which 68 were asymptomatic, and 79 symptomatic). Positive UA samples showed significantly lower alpha diversity (2.29 versus 0.086, p < 0.01) and distinct community composition based on beta-diversity (PERMANOVA on Bray-Curtis distance p < 0.01). Alpha and beta diversity did not significantly differ between asymptomatic and symptomatic patients. Machine learning classifiers combining clinical covariates other than specific signs and symptoms and microbiome features (taxa, metabolic pathways, or virulence factors) revealed mostly microbiome features as predictive of symptomatic UTI over clinical features.

RevDate: 2025-08-25
CmpDate: 2025-08-25

Bao Y, Ho YW, Shen Z, et al (2025)

Ecological Roles and Shared Microbes Differentiate the Plastisphere from Natural Particle-Associated Microbiomes in Urban Rivers.

Environmental science & technology, 59(32):17298-17309.

The "plastisphere," comprising microbes associated with microplastics (MPs), may have substantial ecological impacts on riverine ecosystems. However, little is known about how the microbiomes associated with anthropogenic MPs compare with those associated with natural particles (NPs) in urban rivers with varying MP pollution levels. We therefore conducted a comparative analysis of the metagenomes associated with MPs and NPs (100-5000 μm) and river water (RW) across 10 urban river systems. Although we found similarities in taxonomic and functional compositions between the microbiomes associated with MPs and NPs, the plastisphere exhibited distinct associations with specialized taxa and life-history strategies. These unique traits enhanced the potential of the plastisphere for complex carbohydrate and plastic degradation, nitrate and nitric oxide reduction, and antibiotic resistance and virulence compared with the NP or RW microbiomes. Furthermore, MPs supported the sharing of unique microbes with the surrounding RW; these shared microbes possessed enhanced horizontal gene transfer capabilities and potentially could disperse traits of the plastisphere into the broader RW microbiomes. This study highlights the distinct ecological roles and shared microbes of the plastisphere, indicating that MP pollution may substantially and uniquely impact the function and health of riverine ecosystems.

RevDate: 2025-08-25
CmpDate: 2025-08-25

Zhou Z, Jiang A, Jiang X, et al (2025)

Metabolic cross-feeding of a dietary antioxidant enhances anaerobic energy metabolism by human gut bacteria.

Cell host & microbe, 33(8):1321-1332.e9.

The degradation of complex carbohydrates and other macromolecules by human gut bacteria generates metabolites that are used by neighboring microbes for anaerobic respiration. However, it is largely unknown whether cross-feeding of other dietary compounds can drive energy-yielding redox reactions in the gut. We show that gut bacteria from different phyla cross-feed a common dietary antioxidant to produce energy under anaerobic conditions. Clostridium symbiosum encodes ergothionases that transform ergothioneine, a mushroom-derived antioxidant, into the electron acceptor thiourocanic acid (TUA). TUA is reduced by Bacteroides xylanisolvens, increasing bacterial ATP synthesis and growth. Furthermore, TUA is selectively produced and consumed by certain human fecal microbial communities. Consistent with emerging links between intestinal ergothioneine homeostasis and colorectal cancer, ergothionase is significantly enriched in fecal metagenomes from colorectal cancer patients. Together, these results illustrate how commensalistic cross-feeding of an antioxidant nutrient enhances microbial energy metabolism, which may contribute to interpersonal differences in disease risk.

RevDate: 2025-08-25
CmpDate: 2025-08-25

Le MH, Lee HJ, Justine EE, et al (2025)

Bacillus velezensis GV1 polysaccharides enhance immune function in cyclophosphamide-induced immunosuppressed mice via gut microbiota modulation and metabolic pathway regulation.

Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 190:118387.

In this study, we investigated the immunomodulatory effects of Bacillus velezensis GV1 polysaccharides (BPS) on gut microbial regulation in a cyclophosphamide (CTX)-induced immunosuppressed mouse model. BPS treatment significantly restored immune function, as evidenced by improvements in spleen and thymus indices and increased cytokine expression levels, including IL-6, TNF-α, IFN-γ, and IL-2. Additionally, BPS administration effectively alleviated the CTX-induced histopathological damage to the colon, enhanced tissue repair, and maintained epithelial integrity. The beneficial effects of BPS were associated with the selective modulation of the gut microbiota, and notably enhanced beneficial bacterial taxa, including PAC001112_g, PAC001074_g (Muribaculaceae), Monoglobus, PAC001500_g (Peptococcaceae), and PAC002153_g (Lachnospiraceae). Metagenomic analysis further revealed key metabolic pathways affected by BPS, such as folate biosynthesis, fructose and mannose metabolism, and pentose and glucuronate interconversion, involving essential enzymes such as xylulokinase, triosephosphate isomerase (TIM), and fructan beta-fructosidase. Collectively, these findings indicate that BPS effectively alleviates CTX-induced immunosuppression by modulating gut microbiota composition, underscoring its potential as a valuable supplementary or functional agent with immune-enhancing effects.

RevDate: 2025-08-25
CmpDate: 2025-08-25

Armitage DW, Alonso-Sánchez AG, Coy SR, et al (2025)

Adaptive pangenomic remodeling in the Azolla cyanobiont amid a transient microbiome.

The ISME journal, 19(1):.

Plants fix nitrogen in concert with diverse microbial symbionts, often recruiting them from the surrounding environment each generation. Vertical transmission of a microbial symbiont from parent to offspring can produce extreme evolutionary consequences, including metabolic codependence, genome reduction, and synchronized life cycles. One of the few examples of vertical transmission of N-fixing symbionts occurs in Azolla ferns, which maintain an obligate mutualism with the cyanobacterium Trichormus azollae-but the genomic consequences of this interaction, and whether the symbiosis involves other vertically transmitted microbial partners, are currently unknown. We generated high-coverage metagenomes across the genus Azolla and reconstructed metagenome assembled genomes to investigate whether a core microbiome exists within Azolla leaf cavities, and how the genomes of T. azollae diverged from their free-living relatives. Our results suggest that T. azollae is the only consistent symbiont across all Azolla accessions, and that other bacterial groups are transient or facultative associates. Pangenomic analyses of T. azollae indicate extreme pseudogenization and gene loss compared to free-living relatives-especially in defensive, stress-tolerance, and secondary metabolite pathways-yet, the key functions of nitrogen fixation and photosynthesis remain intact. Additionally, differential codon bias and intensified positive selection on photosynthesis, intracellular transport, and carbohydrate metabolism genes suggest ongoing evolution in response to the unique conditions within Azolla leaf cavities. These findings highlight how genome erosion and shifting selection pressures jointly drive the evolution of this unique mutualism, while broadening the taxonomic scope of genomic studies on vertically transmitted symbioses.

RevDate: 2025-08-25
CmpDate: 2025-08-25

Federico S, Esposito R, De Rosa M, et al (2025)

Comparative metagenomic analyses of the microbiome from three Mediterranean sponges to identify genes involved in biosynthesis of bioactive compounds.

Marine genomics, 82:101202.

Marine sponges host a range of microorganisms and among them, bacteria represent a significant part of their biomass. Furthermore, bacteria are promising sources of natural products to be applied in various fields. Often the study their biotechnological potential is relented by low grow rates. For this reason, such cultivation-independent approaches, as metagenomics tools applied to sponges is obtaining wide success. For the first time, here we aimed at having an almost complete information about taxonomic and functional diversity of bacteria associated to three sponges, Agelas oroides, Haliclona (Halichoclona) vansoesti and Geodia cydonium, previously reported as candidate sources of bioactive compounds for pharmacological, nutraceutical and cosmeceutical purposes. Comparative metagenomic analyses were applied, sequencing DNA from the three sponges by ONT GridION X5 Mk1 sequencer. Our findings revealed for all the analyzed sponges the presence of genes/enzymes responsible for the synthesis of vitamins, fatty acids, antioxidant glutathione, terpenes, steroids and carotenoids. Consequently, we demonstrated the three sponges under analysis and their associated microorganisms could be considered good candidates for the isolation and identification of bioactive compounds for biotechnological application in the field of pharmacology, nutraceuticals and cosmeceuticals as well as environmental biotechnologies. Overall, metagenomic data represent a useful tool exploitable to sustainably develop bioactive products.

RevDate: 2025-08-25
CmpDate: 2025-08-25

Sibinga NA, Werner E, Tegtmeier D, et al (2025)

Animal board invited review: The need for, and the path towards, a functional understanding of the farmed insect microbiome.

Animal : an international journal of animal bioscience, 19(8):101575.

The rapid growth of research on industrially produced insect species over the past two decades has coincided with breakthroughs in the speed and affordability of DNA sequencing. This has allowed researchers to rapidly generate data on the microbial communities associated with farmed insects, especially the gut-residing bacteria of the two cornerstone production species: black soldier fly (BSF, Hermetia illucens) and yellow mealworm (Tenebrio molitor). A picture of the most prevalent and abundant microbes associated with these species has rapidly come into focus. Specific microbial functions have been suggested under extreme or challenging rearing settings, but less is known about the contributions of the microbiome to insect rearing under realistic production conditions. There is limited understanding of how microbial communities of farmed insects arise, are maintained, and change in response to stimuli. Likewise for seemingly basic questions: what functions do insect-associated microbes perform for the host? Which (if any) taxa are essential for healthy insects? This is not intended as a criticism of existing research; indeed, these questions turn out not to be simple. Answering them requires targeted research approaches testing specific hypotheses about farmed insect microbiome function. This review aims to recalibrate the state of knowledge by critically assessing common and emerging strategies to study these microbiomes and existing knowledge gaps about the functional role of the microbiome for BSF and mealworm. Overall, it is clear that microbes are an intrinsic part of the ecology of these two farmed insects. Reciprocal interactions between microbes and insects are extensive, though microbiome community composition depends to a large extent on environmental conditions. To date, it remains unclear how taxonomical shifts correspond to functional shifts and to what extent such changes impact insect physiology. For example, when mealworms are fed plastics, their microbiomes undergo significant changes in microbial composition. These changes are presumed to increase the ability of mealworms and their microbiota to degrade plastic, but this change in function is hard to conclusively demonstrate with current tools. Furthermore, analysis of the literature shows that taxonomically disparate microbial communities may provide similar functional benefits, e.g. lignocellulose breakdown in BSF larvae. This review therefore aims to critically assess the state of the art with regard to functional analysis of the farmed insect microbiome and how available experimental methods can be best applied to identify links between microbial functions and insect physiology and improve the efficiency and sustainability of the farmed insect industry.

RevDate: 2025-08-25
CmpDate: 2025-08-25

Adachi A, Dominguez JJ, Utami YD, et al (2025)

Field dynamics of the root endosphere microbiome assembly in paddy rice cultivated under no fertilizer input.

Plant & cell physiology, 66(7):1086-1101.

Plants accommodate diverse microbial communities, termed the microbiome, which can change dynamically during plant adaptation to varying environmental conditions. However, the direction of these changes and the underlying mechanisms driving them, particularly in crops adapting to the field conditions, are not well understood. Here, we investigate the root endosphere microbiome of rice (Oryza sativa ssp. japonica) across four consecutive cultivation seasons in a high-yield, non-fertilized, and pesticide-free paddy field, compared with a neighboring fertilized and pesticide-treated field. Using 16S rRNA amplicon and metagenome sequencing, we analyzed three Japonica cultivars-Nipponbare, Hinohikari, and Kinmaze. Our findings reveal that the root endosphere microbiomes diverge based on fertilization regime and plant developmental stages, while the effects of cultivar variation are less significant. Machine learning model and metagenomic analysis of nitrogenase (nif) genes suggest enhanced nitrogen fixation activity in the non-fertilized field-grown roots, highlighting a potential role of diazotrophic, iron-reducing bacteria Telmatospirillum. These results provide valuable insights into the assembly of the rice root microbiome in nutrient-poor soil, which can aid in managing microbial homeostasis for sustainable agriculture.

RevDate: 2025-08-25
CmpDate: 2025-08-25

Davidson IM, Nikbakht E, Haupt LM, et al (2025)

Toward accurate vaginal microbiome profiling: protocol, bioinformatics, and core microbiota characterisation.

Journal of assisted reproduction and genetics, 42(7):2421-2436.

PURPOSE: Rising demand for assisted reproductive technologies (ART) with limited improvements in success rates has driven interest in the impact of the vaginal microbiome on fertility outcomes. In order to fully examine the relationship between the vaginal microbiome and fertility outcomes, methodologies and technological developments must be standardised and benchmarked to provide the most accurate assessment of microbial population representation.

METHODS: This study sought to investigate the utility of 16S sequencing and bioinformatic approaches using nanopore sequencing to characterize core vaginal microbiota in a healthy Australian cohort of reproductive-age women.

RESULTS: Optimisation and comparison of different PCR strategies for whole 16S amplification was undertaken, along with the generation of bioinformatic analysis strategies. Initial qPCR identified the 27F-YM (MIX) primer as the most sensitive for C. trachomatis. However, nanopore sequencing revealed no detectable C. trachomatis across all six samples. Among the bioinformatic tools, Porechop with NanoCLUST most accurately identified microbial presence. Community state type (CST) I-characterised by Lactobacillus crispatus dominance-was identified as the most common CST (66%), aligning with patterns of a healthy vaginal microbiome.

CONCLUSION: The findings highlight a Lactobacillus-rich microbiome as the most common among healthy females; however, further refinement-potentially through a metagenomics approach-is recommended to address 16S rRNA primer limitations to enable improved accuracy of microbial detection for the vaginal microbiome.

RevDate: 2025-08-26
CmpDate: 2025-08-26

Franzin M, Lagatolla C, Forgiarini SS, et al (2025)

Klebsiella pneumoniae contributes to altered cytotoxicity of thiopurines in vitro: Possible implications of biotransformation and bacterial metabolism.

British journal of pharmacology, 182(18):4281-4298.

BACKGROUND AND PURPOSE: Thiopurines are used in paediatric inflammatory bowel disease (IBD), but some patients do not respond. Because the gut microbiota influences drug efficacy and IBD-patient microbiota presents increased bacterial abundance, we investigated the impact of candidate Enterobacteriaceae on drug cytotoxicity, metabolism and efficacy.

EXPERIMENTAL APPROACH: Thiopurines were exposed in vitro to bacteria for 4 h at 37°C and drug concentrations measured by UV spectrophotometry. Cytotoxic effects and drug metabolite concentrations on NALM6 and JURKAT cells were determined after treatment with thiopurines exposed or not to bacteria. Drugs were measured in Klebsiella pneumoniae lysates and bacterial conditioned media were used for metabolomic analyses. Shotgun metagenomic sequencing was performed on eight IBD-patient faecal stools.

KEY RESULTS: Incubation of thiopurines with K. pneumoniae, but not Escherichia coli and Salmonella enterica, reduced thiopurine concentrations and cytotoxicity on NALM6 and JURKAT cells. Thiopurine metabolites were lower in cells treated with drugs previously exposed to K. pneumoniae. Internalisation of drugs was demonstrated by their detection in lysates after bacterial incubation. Untargeted metabolomics revealed biotransformation of thiopurines by K. pneumoniae, as reactions of deconjugation, reduction, glycosylation, acetylation or conjugation with propionic acid. Incubation with thiopurines led to changes in the secretion of endogenous bacterial metabolites. K. pneumoniae faecal abundance was associated with lower thiopurine metabolite concentrations in erythrocytes of paediatric IBD-patients.

CONCLUSIONS AND IMPLICATIONS: K. pneumoniae decreases the cytotoxicity of thiopurines through internalisation of MP and TG. We revealed potential bacterial drug biotransformation, as well as negative correlations between bacterial abundance and drug metabolites.

RevDate: 2025-08-25
CmpDate: 2025-08-25

Rozera T, Pasolli E, Segata N, et al (2025)

Machine Learning and Artificial Intelligence in the Multi-Omics Approach to Gut Microbiota.

Gastroenterology, 169(3):487-501.

The gut microbiome is involved in human health and disease, and its comprehensive understanding is necessary to exploit it as a diagnostic or therapeutic tool. Multi-omics approaches, including metagenomics, metatranscriptomics, metabolomics, and metaproteomics, enable depiction of the gut microbial ecosystem's complexity. However, these tools generate a large data stream in which integration is needed to produce clinically useful readouts, but, in turn, might be difficult to carry out with conventional statistical methods. Artificial intelligence and machine learning have been increasingly applied to multi-omics datasets in several conditions associated with microbiome disruption, from chronic disorders to cancer. Such tools have potential for clinical implementation, including discovery of microbial biomarkers for disease classification or prediction, prediction of response to specific treatments, and fine-tuning of microbiome-modulating therapies. The state of the art, potential, and limits, of artificial intelligence and machine learning in the multi-omics approach to gut microbiome are discussed.

RevDate: 2025-08-24
CmpDate: 2025-08-24

Zhang L, Wang S, Wong MCS, et al (2025)

The resident gut microbiome modulates the effect of synbiotics on the immunogenicity after SARS-COV-2 vaccination in elderly and diabetes patients.

NPJ biofilms and microbiomes, 11(1):171.

The study aims to tackle the seed and soil microbiome and mechanisms that contribute to the effect of synbiotics in enhancing immunogenicity after SARS-CoV-2 vaccination in elderly and diabetic patients. Among 369 subjects who received 3 months of SIM01, a gut microbiota-derived synbiotic formula of three Bifidobacterium strains (B. adolescentis, B. bididum, and B. longum) or a placebo after the SARS-CoV-2 vaccines (mRNA vaccine BNT162b2 (Pfizer-BioNTech) or the inactivated vaccine Sinovac-CoronaVac), we performed metagenomic sequencing in stool samples of 280 vaccinees collected at baseline and 3-month postvaccination and metabonomic sequencing in 276 vaccinees collected at baseline and 1-month postvaccination. The open niche of autochthonous gut microbiota (lower levels of Bifidobacterium and decreased functional potential for carbohydrate metabolism) was associated with enhancing SIM01-contained species. The enrichment of three bifidobacterial species after 3 months of SIM01 intervention (BABBBL_fc) was positively correlated with the level of neutralizing antibodies to the BNT162b2 vaccine at 6-month postvaccination. The fold change of benzoic acid was positively correlated with BABBBL_fc in the BNT162b2 vaccinees, which was also implicated with SARS-CoV-2 surrogate virus neutralization test (sVNT)% levels at 1-month postvaccination. Importantly, SIM01 strain engraftment assessed by StrainPhlAn (A metagenomic strain-level population genomics tool) was associated with a higher fold change of three bifidobacterial species and could be predicted based on the baseline gut microbiome. Therefore, the resident gut microbiome affected the SIM01 engraftment, which was associated with the immunogenicity of SARS-CoV-2 BNT162b2 vaccines.

RevDate: 2025-08-24
CmpDate: 2025-08-24

Tang M, Li C, Ge X, et al (2025)

Honeybee-Gilliamella synergy in carbohydrate metabolism enhances host thermogenesis in cold acclimation.

NPJ biofilms and microbiomes, 11(1):172.

How gut symbionts contribute to host adaptation remains largely elusive. Studying co-diversified honeybees and gut bacteria across climates, we found cold-adapted species (Apis mellifera, A. cerana) exhibit enhanced genomic capacity for glucose, pyruvate, lipid and glucuronate production versus tropical species. Metagenomics revealed Gilliamella as the most enriched gut bacterium in cold-adapted bees. Germ-free honeybees inoculated with the Gilliamella from A. cerana showed increased activity, body temperature and fat storage upon cold exposure. Saccharide metabolomics demonstrated higher hindgut glucose levels in Gilliamella-colonized A. mellifera versus germ-free bees, and in A. cerana versus three sympatric tropical species. Although Gilliamella can hydrolyze β-glucan into glucose, cultural experiments suggest it preferentially degrades glucuronate to pyruvate. In turn, monocolonized bees upregulated hindgut glucose/pyruvate utilization while increasing glucuronate provision, suggesting nutritional complementarity. Gilliamella's transporter genes predominantly target ascorbate (a glucuronate derivative), which is elevated in inoculated hindguts. Accordingly, Gilliamella converts ascorbate to D-xylulose-5P (promoting lipogenesis), while showing reduced growth on glucuronate/ascorbate versus glucose, potentially minimizing glucose competition with hosts. We revealed a highly coordinated host-symbiont metabolic synergy enhancing host energy acquisition for cold adaptation.

RevDate: 2025-08-23
CmpDate: 2025-08-24

Jang S, Lee EJ, Park S, et al (2025)

Spatial host-microbiome profiling demonstrates bacterial-associated host transcriptional alterations in pediatric ileal Crohn's disease.

Microbiome, 13(1):189.

BACKGROUND: Crohn's disease (CD) is a chronic inflammatory bowel disease involving complex relationships between the gut microbiome and host immune system. However, the spatial relationships between tissue-resident bacteria and host cells in CD pathogenesis remain poorly understood. We developed a spatial host-microbiome profiling approach to simultaneously detect host transcriptomics and bacterial species at high taxonomic resolution in pediatric ileal CD tissues.

RESULTS: In this prospective case-control study, we analyzed 14 terminal ileal tissue samples from six pediatric patients with ileal CD and two controls. Spatial host-microbiome sequencing, combined spatial transcriptomics and in-situ polyadenylation, and bulk shotgun metagenome sequencing were performed. We developed a comprehensive bioinformatics pipeline to identify bacterial species and analyze host-microbiome interactions at cellular resolution, resulting in 13,876 analyzed cells. Our approach revealed increased bacterial abundance in CD tissues compared with controls. The extent of bacterial infiltration at diagnosis correlated with disease prognosis and severity of endoscopic findings. We identified 16 potentially beneficial and nine pathogenic microbiome members in ileal CD, including several newly discovered risk-modulating bacterial species. Cell-type-specific host gene expression analysis revealed transcriptome alterations related to bacterial defense mechanisms in the presence of various bacterial species.

CONCLUSIONS: Our spatial host-microbiome profiling approach enables simultaneous species-level identification of bacteria and host transcriptomics. It reveals the intricate interactions between host cells and bacteria, providing cellular-level insights into CD pathogenesis. Our approach offers a powerful tool for investigating host-microbiome interactions in various microbiome-associated diseases to direct new strategies for microbiome-based therapeutics and prognostic markers. Video Abstract.

RevDate: 2025-08-24
CmpDate: 2025-08-24

Díaz-Moreno N, Lobos C, Carvajal A, et al (2025)

Valorization of aromatic hydrocarbons into polyhydroxyalkanoates: advances towards sustainable waste gas treatment.

Bioresource technology, 436:132991.

Benzene, toluene, ethylbenzene, xylene and styrene (BTEXS) are priority gaseous pollutants due to their widespread release and health risks. This study demonstrates an efficient BTEXS bioconversion process into polyhydroxyalkanoates (PHA) using a specialized mixed microbial culture dominated by Pseudonocardia and Rhodococcus. The consortium achieved simultaneous degradation rates of 15.1 ± 3.9 g m[-3]h[-1] for toluene and 17.6 ± 5.7 g m[-3]h[-1] for ethylbenzene, with removal efficiencies over 90 %. The operating strategy promoted PHA accumulation up to 21.4 % gPHA gDCW[-1]. A two-step process was successfully implemented consisting of an initial reactor for biomass growth followed by a second reactor under nitrogen deprivation. PHA analysis revealed the synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer with a dynamic increase in 3-hydroxyvalerate content under prolonged nitrogen starvation. Metagenomics provided insights into the microbial networks and metabolic pathways involved in the process. This research offers a sustainable solution for mitigating BTEXS pollution while producing valuable bioplastics.

RevDate: 2025-08-24
CmpDate: 2025-08-24

Ni H, Wang J, Wu H, et al (2025)

Exposure to the growth promoter tylosin elicits gut microbiota disruption and metabolic imbalance in mouse model.

Environment international, 202:109684.

The environmental risk associated with the usage of the antibiotic tylosin as an animal growth promoter (AGPs) needs to be assessed because such agents are used in abundance and contamination of the environment is common, yet their effects on the physiology and gut microbiota composition of animals and humans are poorly understood. In this work, we performed metagenomic analysis and revealed that tylosin significantly disrupted the gut microbiota structure of animals, reduced species diversity, and caused the increase in the relative abundance of Blautia (60.95%). Enrichment of multiple contigs containing ARGs was observed, indicating that tylosin promotes antimicrobial resistance (AMR) development. Transcriptomic analyses of ileum tissues revealed perturbation in gene expression patterns suggestive of mitochondrial dysfunction and energy metabolism imbalance. These alterations might compromise nutrient absorption and utilization in the GI tract, and heighten the risk of development of obesity and non-alcoholic fatty liver disease (NAFLD). Furthermore, downregulation of immune-related gene expression was observed, indicating that tylosin caused immunosuppression and increased susceptibility to microbial infections when used over extended periods. Integrated omics analysis of the liver also showed significant disturbances in metabolism through activation of the arachidonic acid metabolism pathway, exacerbating inflammatory responses, and precipitating the occurrence of metabolic disorders such as type 2 diabetes mellitus (T2DM) and NAFLD. Our findings unveil the detrimental effects of tylosin on animal gut microbiota and metabolic functions and highlight the potential health risks to wildlife and humans when released into the environment. These findings highlight a need for cautious use of AGPs and the development of safer alternatives.

RevDate: 2025-08-24
CmpDate: 2025-08-24

Wang Z, He Y, Luo M, et al (2025)

Transfer toxicity of polystyrene microplastics in vivo: Multi-organ crosstalk.

Environment international, 202:109604.

The accumulation of microplastics (MPs) within the environment caused serious ecological and health problems. Nevertheless, its systemic toxicity to organisms and its mechanisms lack effective evidence. This study established a model of MP exposure through the gavage of polystyrene (PS)-MPs particles to maternal mice on days 1 to 21 of lactation. The results demonstrated that PS-MPs were distributed widely in maternal mice, occurring mainly in the feces, colon, liver and mammary glands. Further experiments revealed that the gut and blood-milk barriers were disrupted, and pathological injury and inflammatory reactions were observed in the liver, gut, and mammary glands. Metabolomic and metagenome analysis indicated abnormalities in hepatic bile acid metabolism and significant alterations in the gut microbiota after exposure to PS-MPs. These alterations led to increased disruption of the intestine-liver axis. Notably, with fecal microbiota transplantation and antibiotic experiments, we observed that elimination of the intestinal microbiota reduced tissue inflammation and improved gut and blood-milk barrier leakage. These findings demonstrated that PS-MPs exaggerated intestine-liver axis disorders by inducing colonic injury, intestinal ecological dysregulation and abnormal hepatic bile acid metabolism. Furthermore, PS-MPs translocated via the intestine-liver axis and exerted broader toxic effects on mammary tissue. Overall, our study uncovered the transfer toxicity of PS-MPs in mice, proposing the possibility of a gut-liver-mammary axis.

RevDate: 2025-08-24
CmpDate: 2025-08-24

Yin Y, Xiao K, Wang YF, et al (2025)

Nanoplastics released from textile washing enrich antibiotic resistance and virulence genes in sewage sludge microbiomes.

Environment international, 202:109611.

The washing of synthetic textiles is a major source of microplastic pollution, contributing to the widespread presence of nanoplastics (NPs) in wastewater treatment plants (WWTPs). However, the role of laundry-released NPs in shaping microbial communities and facilitating the spread of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in sludge remains unclear. Here, we quantified the concentration and size distribution of NPs released during the washing of polyamide (PA), polypropylene (PP), and polyethylene terephthalate (PET) textiles using nanoparticle tracking analysis. Substantial NP release was observed, with concentrations ranging from 3.4 × 10[7] to 1.7 × 10[8] particles mL[-1], and sizes between 130 and 240 nm. We then evaluated their impact on ARG and VFG profiles, as well as bacterial communities in anaerobic sludge through metagenomic and 16S rRNA gene sequencing. Laundry-released NPs significantly increased the abundance of ARGs, VFGs, and mobile genetic elements (MGEs) in sludge, with D8A-2 and Halomonas identified as potential ARG and VFG hosts. Notably, the mechanisms driving ARG enrichment varied by NP type. PA-released NPs elevated reactive oxygen species levels in bacterial communities, facilitating horizontal gene transfer via MGEs, while PP- and PET-released NPs enhanced ARG enrichment through both horizontal gene transfer and shifts in bacterial community composition. These findings highlight the risks posed by laundry-released NPs accumulating in WWTPs, emphasizing the urgent need for improved wastewater management strategies to mitigate their environmental and public health impacts.

RevDate: 2025-08-23
CmpDate: 2025-08-23

Zhang Y, Liao YT, Liu F, et al (2025)

Impact of diet in shaping gut virome of grain-fed and grass-fed beef cattle revealed by a comparative metagenomic study.

Microbiome, 13(1):190.

BACKGROUND: In the United States beef industry, grain-feeding and grass-feeding are the two most common types of cattle feeding. Different feeding methods are likely to affect gut microbiota compositions and subsequently change microbial adaptation and cattle metabolism. However, there is limited information regarding the impact of diet on cattle gastrointestinal virome. This study examined the composition of fecal virome from grain-fed and grass-fed beef cattle and identified unique virome features to understand the relationship between these two feeding types.

RESULTS: Six grain-fed and six grass-fed Angus beef cattle were weighed, and their fecal samples were collected for further viral metagenomic sequencing. The difference in animal growth revealed a significantly higher post-weaning weight in grain-fed cattle than in grass-fed cattle after day 56. Furthermore, the analysis of the fecal viral population showed that approximately 795 and 1266 predicted viral sequences were obtained in the grain-fed and grass-fed samples, respectively. Among those, 54.3% of the grain-fed and 26.3% of the grass-fed viral sequences were identified as known viruses. The taxonomic classification showed that viruses belonging to the order Caudovirales, mostly bacteriophages, dominated the cattle virome in both sample groups, followed by the order Cremeviriles and Petitvirales. At the family level, 13 and 16 different viral families were detected in the grain and grass-fed groups, respectively. The comparison of virome features from the two groups indicated that the viral population from the kingdom Bamfordvirae had a significantly higher abundance in the grain-fed group than in the grass-fed cattle virome. In contrast, the kingdom Heunggongvirae had a significantly higher abundance in the grass-fed group than in the grain-fed cattle virome. Moreover, the viruses, belonging to the order Caudovirales and the family Podoviridae, had significantly higher abundances in the grass-fed virome than in the grain-fed virome.

CONCLUSIONS: The findings indicate the influence of animal feeds on the changes in gastrointestinal viral compositions and their potential association with cattle weight gain. The current outcome can contribute to further understanding of phage-bacterial interactions and their underlying mechanisms in regulating the animal host's metabolism and feed efficiency. Video Abstract.

RevDate: 2025-08-23
CmpDate: 2025-08-23

Azmi MAI, William-Dee J, Morni MA, et al (2025)

Metagenomic insights into host-specific gastroenteritis bacteria in forest rodents of Sarawak, Borneo: implications for one health surveillance of rodent-borne pathogens.

BMC microbiology, 25(1):531.

Rodents are known to act as reservoirs for zoonotic diseases due to their widespread distribution and synanthropic nature. Among these, foodborne pathogens capable of causing gastroenteritis in humans are of particular concern, as rodents can facilitate their transmission through contamination of food sources. Forest-dwelling rodents may harbour bacterial taxa native to their habitat, posing a risk of zoonotic spillover to nearby human settlements. This risk is further heightened by the growing prevalence of ecotourism activities, particularly in tropical countries like Malaysia. In this study, rodent trapping was conducted in selected forested areas adjacent to human settlements across Sarawak. Nanopore sequencing of the full-length 16 S rRNA gene was conducted on faecal DNA from 46 rodent individuals representing seven different species (Maxomys surifer, M. tajuddinii, M. whiteheadi, Niviventer cremoriventer, Rattus tanezumi, R. tiomanicus and Sundamys muelleri). A total of ten bacterial species associated with gastroenteritis were successfully detected. Notable findings in this study include Campylobacter, Salmonella and Shigella species, which are known to cause bacterial gastroenteritis in humans. Also, the presence of certain bacterial taxa in specific rodent genera suggests potential host specificity of foodborne pathogens. This study highlights the potential public health risks caused by rodent-borne bacterial transmission and the importance of monitoring forest rodents as potential reservoirs of zoonotic pathogens.

RevDate: 2025-08-23
CmpDate: 2025-08-23

Timilsina M, Chundru D, Pradhan AK, et al (2025)

Benchmarking Metagenomic Pipelines for the Detection of Foodborne Pathogens in Simulated Microbial Communities.

Journal of food protection, 88(9):100583.

Foodborne pathogens pose a significant public health threat worldwide, despite modern advances in food safety. While molecular detection of pathogens in complex food matrices has gained attention to support tracking and preventing outbreaks, thorough benchmarking is needed to optimize workflows for specific scenarios. This study evaluated the performance of four metagenomic classification tools: Kraken2, Kraken2/Bracken, MetaPhlAn4, and Centrifuge, for estimating pathogen presence and abundance in simulated microbial communities representing three food products. Specifically, we evaluated workflow performance in predicting varying levels of Campylobacter jejuni, Cronobacter sakazakii, and Listeria monocytogenes in metagenomes of chicken meat, dried food, and milk products. Metagenomes were simulated to include the respective pathogen at defined relative abundance levels (0%-control, 0.01%, 0.1%, 1%, and 30%) within the respective food microbiome. Performance evaluations demonstrated that Kraken2/Bracken achieved the highest classification accuracy, with consistently higher F1-scores across all food metagenomes, whereas Centrifuge exhibited the weakest performance. MetaPhlAn4 also performed well, particularly in predicting C. sakazakii in dried food metagenomes, but was limited in detecting pathogens at the lowest abundance level (0.01%). Overall, Kraken2/Bracken and Kraken2 exhibited the broadest detection range, correctly identifying pathogen sequence reads down to the 0.01% level, whereas MetaPhlAn4 and Centrifuge had higher limits of detection. Our results highlight Kraken2/Bracken as an effective tool for pathogen detection, with MetaPhlAn4 serving as a valuable alternative depending on pathogen prevalence. These findings provide crucial insights for selecting metagenomic tools for applications in food safety and pathogen surveillance applications.

RevDate: 2025-08-23
CmpDate: 2025-08-23

Aziz T, Shabbir MA, Sarwar A, et al (2025)

Exploring the multifaceted probiotic potential of Lactiplantibacillus plantarum NMGL2, investigating its antimicrobial resistance profiles and bacteriocin production.

Journal of microbiological methods, 236:107178.

BACKGROUND: Lactiplantibacillus plantarum is widely recognized for its probiotic and antimicrobial properties, making it a valuable candidate for food and clinical applications. Genomic characterization provides deeper insight into its potential health benefits and safety profile.

AIM: This study aimed to sequence and analyze the genome of L. plantarum NMGL2 to evaluate its antimicrobial resistance, probiotic potential, and genetic suitability for biotechnological applications.

METHODS: The genomic DNA of L. plantarum NMGL2 was extracted and sequenced using Illumina technology. Genome assembly and annotation were performed, followed by gene prediction using Prokka and identification of antimicrobial resistance genes, virulence factors, and probiotic markers via BLAST. Metagenomic analysis of gut microbiota samples and phylogenetic analysis were conducted to assess strain relationships with other L. plantarum isolates.

RESULTS: The genome analysis revealed approximately 3000 protein-coding genes, including those encoding bile salt hydrolase, antimicrobial peptides, and antibiotic resistance determinants. Phylogenetic analysis showed that NMGL2 is closely related to other probiotic L. plantarum strains, supporting its probiotic characteristics and its potential role in combating pathogens.

CONCLUSION: L. plantarum NMGL2 demonstrates promising probiotic traits and carries genes that support its application in food safety and clinical contexts. Further, in vivo studies are needed to validate its health benefits and ensure safety, particularly in treating gastrointestinal disorders.

RevDate: 2025-08-23
CmpDate: 2025-08-23

Zhou Z, Yang M, Fang H, et al (2025)

Tailoring a Functional Synthetic Microbial Community Alleviates Fusobacterium nucleatum-infected Colorectal Cancer via Ecological Control.

Advanced science (Weinheim, Baden-Wurttemberg, Germany), 12(31):e14232.

Polymorphic microbiomes play important roles in colorectal cancer (CRC) occurrence and development. In particular, Fusobacterium nucleatum (F. nucleatum) is prevalent in patients with CRC, and eliminating it is beneficial for treatment. Here, multiple metagenomic sequencing cohorts are combined with multiomics to analyze the microbiome and related functional alterations. Furthermore, local human metagenome and metabolomics are used to discover commensal consortia. A synthetic microbial community (SynCom) is then designed by metabolic network reconstruction, and its performance is validated using coculture experiments and an AOM-DSS induced mouse CRC model. The sequencing result shows that F. nucleatum is more abundant in both the feces and tumor tissues of CRC patients. It causes alterations through various pathways, including microbial dysbiosis, lipid metabolism, amino acid metabolism, and bile acid metabolism disorders. The designed SynCom contains seven species with low competition interrelationship. Furthermore, the SynCom successfully inhibits F. nucleatum growth in vitro and achieves colonization in vivo. Additionally, it promotes F. nucleatum decolonization, and enhances tryptophan metabolism and secondary bile acid conversion, leading to reduced lipid accumulation, decreased inflammatory reaction, and enhanced tumor inhibition effect. Overall, the bottom-up designed SynCom is a controllable and promising approach for treating F. nucleatum-positive CRC.

RevDate: 2025-08-22
CmpDate: 2025-08-22

Kotrbová L, Grabicová K, Švecová H, et al (2025)

The effect of WWTP products amendments on Phaseolus vulgaris rhizosphere and its ability to inactivate clarithromycin.

Scientific reports, 15(1):30950.

With increasing efforts to reuse wastewater treatment plant (WWTP) products in agriculture, assessing their impact on soil-plant systems is crucial, while the effects of accompanying antibiotic residues on soil microbial communities have not yet been adequately studied. This study focuses on clarithromycin (CLR), highly present in wastewater, and investigates the CLR-degradation potential of plant-associated microorganisms. Phaseolus vulgaris plants were grown in raised beds filled with Haplic Cambisol and amended with or without WWTP products (treated wastewater, biosolid, or composted biosolid), as a source of CLR residues. The rhizosphere microbiomes after biosolid amendments was significantly enriched by Pseudomonadaceae as assessed by 16S rRNA metagenomics and cultures enriched by CLR revealed dominance of Proteobacteria. However, no degradation of CLR by microbial consortia or enrichment cultures was observed, suggesting the multiplication of CLR-resistant bacteria with other resistance mechanisms. Cultivation-based approach combined with antibiotic modulation assays and subsequent LC-MS analysis confirmed the complete CLR removal by seven phylogenetic groups of actinomycetes in vitro. The proportion of isolates indicated that the rhizosphere is a natural reservoir for CLR-inactivating microorganisms; however, the amendment of soils with WWTP products can significantly increase their abundance and diversity.

RevDate: 2025-08-22
CmpDate: 2025-08-22

Zhang M, Wang X, Yao H, et al (2025)

Plasticity of the gut microbiome of golden snub-nosed monkeys (Rhinopithecus roxellana) in response to seasonal variation in diet.

NPJ biofilms and microbiomes, 11(1):169.

The effects of seasonal fluctuations in food availability on gut microbiome composition, diversity, and function present significant challenges to animals with hard-to-digest diets. Here, we investigate seasonal variation the gut microbiome of wild golden snub-nosed monkeys (Rhinopithecus roxellana), a foregut fermenting primate, using metagenomics and metatranscriptomics data. We reconstructed 578 metagenome-assembled genomes (MAGs), 76.5% of which did not have exact matches in reference databases, highlighting the novelty of their gut microbiota. The gut microbiome of wild golden snub-nosed monkeys exhibited high diversity and enrichment in plant secondary compound metabolism during summer, while in winter it was enriched with enzymes that function in lichen polysaccharide degradation and Lachnospiraceae, which is important for energy balance. Captive monkeys on a consistent diet showed minimal seasonal variation in gut microbiome composition. Habitat changes also affected golden snub-nosed monkey microbiota community assembly and carbon cycling pathways. These findings underscore the gut microbiome's plasticity in meeting host dietary needs under varying environmental conditions.

RevDate: 2025-08-22

Qin Q, Zhu Y, Yang L, et al (2025)

Oral microbiome between patients with non-obstructive and obstructive hypertrophic cardiomyopathy.

Chinese medical journal [Epub ahead of print].

BACKGROUND: The profile and clinical significance of the oral microbiome in patients with non-obstructive hypertrophic cardiomyopathy (noHCM) and obstructive hypertrophic cardiomyopathy (oHCM) remain unexplored. The objective of this study was to evaluate the difference of oral microbiome between noHCM and oHCM patients.

METHODS: This cross-sectional study enrolled 18 noHCM patients and 26 oHCM patients from Fuwai Hospital, Chinese Academy of Medical Sciences between 2020 and 2021. Clinical and periodontal evaluations were conducted, and subgingival plaque samples were collected. Metagenomic sequencing and subsequent microbial composition and functional analyses were performed.

RESULTS: Compared to oHCM patients, those with noHCM had higher systolic blood pressure (138.1 ± 18.8 mmHg vs. 124.2 ± 13.8 mmHg, P = 0.007), a larger body circumference (neck circumference: 39.2 ± 4.0 cm vs. 35.1 ± 3.7 cm, P = 0.001; waist circumference: 99.7 ± 10.5 cm vs. 92.2 ± 10.8 cm, P = 0.027; hip circumference: 102.5 ± 5.6 cm vs. 97.5 ± 9.1 cm, P = 0.030), a greater left ventricular end-diastolic diameter (46.6 ± 4.9 mm vs. 43.1 ± 4.9 mm, P = 0.026), and a lower left ventricular ejection fraction (64.1 ± 5.7 % vs. 68.5 ± 7.8%, P = 0.048). While overall biodiversity and general microbial composition were similar between the noHCM and oHCM groups, ten taxa displayed significant differences at the genus and species levels, with Porphyromonas gingivalis showing the highest abundance and greater enrichment in noHCM (relative abundance: 7.79535 vs. 4.87697, P = 0.043). Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis identified ten distinct pathways, with pathways related to energy and amino acid metabolism being enriched in oHCM patients, and those associated with genetic information processing less abundant in the oHCM group. Metabolic potential analysis revealed ten significantly altered metabolites primarily associated with amino sugar and nucleotide sugar metabolism, porphyrin metabolism, pentose and glucuronate interconversion, and lysine degradation.

CONCLUSIONS: The higher abundance of Porphyromonas gingivalis, which is known to impact cardiovascular health, in noHCM patients may partially account for clinical differences between the groups. Pathway enrichment and metabolic potential analyses suggest microbial functional shifts between noHCM and oHCM patients, potentially reflecting inherent metabolic changes in HCM.

RevDate: 2025-08-22
CmpDate: 2025-08-22

Bhatt P, Rajesh P, Kukkar D, et al (2025)

Metagenomic profiling of gut microbime: associating their role with the advancement of diabetic nephropathy.

Antonie van Leeuwenhoek, 118(9):135.

Emerging evidence suggests that alterations in the gut microbiome should play a critical role in the development and progression of type 2 diabetes and its complication such as diabetic nephropathy (DN). Nevertheless, a considerable gap remains in our understanding of the interconnection between DN pathogenesis and gut microbiota arrangement. In this context, this review highlights recent research on the connection between the intestinal microbiota and DN risk, with a particular focus on the role of microbial metabolites in disease development. It also highlights recent advancements in metagenomic analyses of gut microbial communities and their potential contribution to the progression of DN. Further, it describes the challenges associated with the metagenomics-based analysis of intestinal microbiota and the advancement of therapeutics for DN. An exploration of the surveyed literature reveals the lack of any definitive correlation between gut microbiota and DN transition, even when assessed in view of widespread geographical and ethnic diversity. Future research in this domain should be conducted to address various issues like increasing the number of participants, intake patient diversity, logistical difficulties, and racial disparities. A critical assessment of these parameters will help improve our understanding of the potential contribution of gut microbiota to the DN progression.

RevDate: 2025-08-22
CmpDate: 2025-08-22

Dinçer S, Ülger Y, A Delik (2025)

Mucosal microbiota signatures reveal diagnostic insights in chronic liver disease.

BMC gastroenterology, 25(1):607.

PURPOSE: Chronic liver disease (CLD) and complications of cirrhosis are responsible for the deaths of approximately two million people per year worldwide. Abnormal intestinal permeability in the intestinal-liver axis and development of intestinal dysbiosis increase disease progression contributing to chronic systemic inflammation in CLD patients. The intestinal microbiota acts as a bioreactor for autonomous metabolic and immunological functions in regulating the host's response to external stimuli in the intestinal microbiota. The study aimed to analyze the gut microbiota profile from colonic mucosal biopsy materials in CLD patients using a metagenomic application.

MATERIALS AND METHODS: CLD and control groups were formed based on predefined inclusion and exclusion criteria from the study. In the metagenomic study, colonic mucosal biopsy material was studied from a total of 40 individuals, 20 with CLD and 20 healthy controls. We analyzed gut microbiota by 16 S rRNA metagenomic next-generation sequencing (NGS) method from colonic mucosal biopsy samples in CLD and healthy individuals. Metagenomic results were analyzed by Principal Component Analysis (PCA).

RESULTS: Significant differences were observed between the CLD and control groups across multiple taxonomic levels. At the phylum level, Proteobacteria were significantly enriched in CLD patients, while Firmicutes predominated in controls. Class-level analysis showed increased Gammaproteobacteria in CLD, the former associated with inflammatory pathways. At the order level, Enterobacterales were significantly higher in CLD (OR: 1.89, p = 0.04), whereas Clostridiales were more abundant in controls. Family-level comparisons revealed elevated Enterobacteriaceae in CLD, while Ruminococcaceae and Veillonellaceae were relatively preserved in controls. At the genus level, Prevotella and Streptococcus were increased in controls. Alpha diversity indices (Shannon, Chao1) were significantly lower in the CLD group (p < 0.001), indicating reduced microbial richness. Beta diversity analysis (PCoA, Bray-Curtis) showed distinct clustering between groups, supporting compositional divergence. Integration of metagenomic findings with biochemical markers (e.g.

, GGT: OR 0.79, p = 0.03) further underscored group-specific microbial signatures.

CONCLUSION: We observed a significant compositional shift in the gut microbiota of patients with CLD. Notably, pro-inflammatory taxa were increased and a decrease in beneficial bacterial groups involved in maintaining microbial homeostasis. Diversity analyses indicated a reduction in microbial richness in the CLD group. These findings may aid in identifying CLD-specific microbial signatures. Furthermore, integrating metagenomic data with biochemical parameters may contribute to improved diagnostic strategies.

RevDate: 2025-08-22
CmpDate: 2025-08-22

Welsch EC, Barron MR, Storage KM, et al (2025)

Gut microbiome and bile acid changes after male rodent sleeve gastrectomy: what comes first?.

American journal of physiology. Regulatory, integrative and comparative physiology, 329(3):R410-R421.

Understanding how a sleeve gastrectomy (SG) achieves metabolic improvement is challenging due to the complex relationship between the liver, bile acid (BA) pool, and gut microbiome. We hypothesized that SG alters the gut microbiome, which then increases the BA pool, leading to metabolic efficacy. We performed fecal material transfer (FMT) from SG or sham mice to surgically naïve mice with an intact microbiome. We evaluated the effect of surgery and FMT on BA-related liver enzymes, BA concentrations, and gut microbiome composition via 16S and metagenomic analysis. SG significantly deflected weight gain compared with sham surgery, 5 ± 2 g versus 10 ± 3 g, respectively (P = 0.004). SG significantly increased the BA pool and decreased liver transcription of slc10a1 (P = 0.04) and cyp8b1 (P = 0.03). Random forest analysis identified several features with significantly increased relative abundance in SG compared with sham mice, including Lactobacillus. Examination of metabolic profiles with metagenomic analysis revealed a BA salt hydrolase produced by the Ligilactobacillus species. FMT of SG stool to surgically naïve mice significantly decreased the BA pool compared with sham FMT (P = 0.034). Unlike SG surgery, we found no effect of SG or sham FMT on bile acid-related enzymes in the liver after 14 wk of treatment. Overall, we propose that the metabolic benefits of SG surgery are related to decreased liver transcription of cyp8b1 and slc10a1 with subsequent increases in the systemic and enterohepatic BA pool, including lithocholic acid. The gut microbiome adapts to the altered BA pool with associated increases in Ligilactobacillus and bile salt hydrolase production.NEW & NOTEWORTHY We propose that the metabolic benefits of sleeve gastrectomy are initiated by decreased liver transcription of cyp8b1 and slc10a1. A notable downstream effect includes changes in systemic bile acid composition and circulation, including increased LCA. An altered gut microbiome after surgery includes increases in Ligilactobacillus that was shown to express a bile salt hydrolase, which could be a contributor to the post-sleeve gastrectomy gut microbiome changes.

RevDate: 2025-08-22
CmpDate: 2025-08-22

Thng KX, Tiew PY, Mac Aogáin M, et al (2025)

Sputum metagenomics in bronchiectasis reveals pan-European variation: an EMBARC-BRIDGE study.

The European respiratory journal, 66(2): pii:13993003.00054-2025.

BACKGROUND: The European Multicentre Bronchiectasis Audit and Research Collaboration (EMBARC) registry shows considerable variation in culturable microbes in sputum between different European countries. The additive role of next-generation metagenomic sequencing remains unexplored and the association with antimicrobial resistomes unknown.

METHODS: We used next-generation shotgun metagenomic sequencing to prospectively assess sputum from 349 individuals recruited into the EMBARC Bronchiectasis Research Involving Databases, Genomics and Endotyping (BRIDGE) study from three European regions: Northern and Western Europe, Southern Europe and the UK. Samples were included from eight European countries. Microbiome and resistome profiles were assessed in relation to clinical outcomes.

RESULTS: Next-generation metagenomic sequencing reproduced differences between countries in microbial profiles that were previously shown by culture in the EMBARC study. Metagenomics provided enhanced detection for some bronchiectasis pathogens, including Pseudomonas aeruginosa, Haemophilus influenzae and Streptococcus pneumoniae. Three metagenomic microbial clusters dominated by the genera Pseudomonas, Streptococcus and Haemophilus demonstrated pan-European but variable distribution. Diverse resistomes, linked to underlying microbiomes, were identified across Europe, with significantly higher diversity of resistance gene determinants in Southern Europe. Resistome composition significantly differed between regions, characterised by regionally contrasting multidrug-resistant profiles. The EMBARC-BRIDGE cohort validated established bronchiectasis resistotypes RT1 and RT2, which occur at varying frequency across regions. Despite geographic variation in microbiome and resistome profiles in bronchiectasis across Europe, analogous antimicrobial resistance gene profiles associated with the key bronchiectasis genera Pseudomonas, Streptococcus and Haemophilus, independent of country or region.

CONCLUSION: Sputum metagenomics confirms and extends prior observations of regional variation in bronchiectasis microbiology. Important variation in the distribution of pathogens and antimicrobial resistance genes has implications for antimicrobial practices across Europe.

RevDate: 2025-08-22
CmpDate: 2025-08-22

Erickson I, Davidson S, Choi H, et al (2025)

Intestinal dysbiosis alters acute seizure burden and antiseizure medicine activity in Theiler's virus model of encephalitis.

Epilepsia, 66(8):3022-3034.

OBJECTIVE: Brain infection with Theiler's murine encephalomyelitis virus (TMEV) in C57BL/6J mice produces an etiologically relevant model of acquired seizures. Dietary changes can modify seizure presentation following TMEV brain infection and influence intestinal microbiome diversity and composition. Intestinal dysbiosis may thus similarly affect seizure burden and antiseizure medicine (ASM) activity in this model, independent of pharmacokinetic effects. We thus sought to define the influence of antibiotic (ABX)-induced gut dysbiosis on acute seizure presentation, anticonvulsant activity of carbamazepine (CBZ), and CBZ pharmacokinetics with TMEV infection.

METHODS: Male C57BL/6J mice (4-5 weeks old) received oral ABX or saline (SAL) once daily beginning on arrival through day 7 after TMEV infection (postinfection [p.i.]). Mice were infected with TMEV or phosphate-buffered saline on day 0. Mice received intraperitoneal (20 mg/kg) CBZ or vehicle (VEH) twice daily on days 3-7 p.i. and were assessed for handling-induced seizures 30 min after treatment. Plasma was collected on day 7 p.i. at 15 and 60 min after CBZ administration for bioanalysis.

RESULTS: TMEV infection induced acute seizures, but ABX-induced gut dysbiosis altered seizure presentation. There were 75% SAL-VEH, 35% SAL-CBZ, 35% ABX-VEH, and 72% ABX-CBZ mice with seizures during the 7-day monitoring period. There was a significant pretreatment × ASM interaction (p = .0001), with differences in seizure burden in SAL- versus ABX-pretreated mice (p = .004). CBZ significantly increased latency to seizure presentation, an effect absent in ABX-CBZ mice. Plasma CBZ concentrations did not differ between SAL and ABX pretreatment groups, suggesting that ABX did not influence CBZ pharmacokinetics.

SIGNIFICANCE: ABX-induced gut dysbiosis markedly altered acute disease trajectory with TMEV-induced encephalitis, reflecting a novel contribution of the gut microbiome to seizure presentation. ABX-induced gut dysbiosis also significantly changed acute seizure control by CBZ, but did not influence plasma CBZ concentrations. The gut-brain axis is thus an underrecognized contributor to TMEV infection-induced seizures, ASM activity, and disease burden.

RevDate: 2025-08-21
CmpDate: 2025-08-21

Wang T, Zhang P, Anantharaman K, et al (2025)

Metagenomic analysis reveals how multiple stressors disrupt virus-host interactions in multi-trophic freshwater mesocosms.

Nature communications, 16(1):7806.

Virus-host interactions are vital to microbiome ecology and evolution, yet their responses to environmental stressors under global change remain poorly understood. We perform a 10-month outdoor mesocosm experiment simulating multi-trophic freshwater shallow lake ecosystems. Using a fully factorial design comprising eight treatments with six replicates each, we assess the individual and combined effects of climate warming, nutrient loading, and pesticide loading on DNA viral communities and their interactions with microbial hosts. Metagenomic sequencing recovers 12,359 viral OTUs and 1628 unique prokaryotic metagenome-assembled genomes. Our analysis shows that combined nutrient and pesticide loading causes significant disruption by synergistically reducing viral alpha diversity while altering beta diversity and predator-prey linkages. Stressors lead to the simplification of virus-bacteria cross-kingdom networks, with nutrient-pesticide combinations exerting the strongest influence, although warming impacts diminish in the presence of pesticides. Stressor-driven changes also affect the abundance and composition of viral auxiliary metabolic genes, leading to complex shifts in virus-mediated metabolic pathways under multiple stress conditions. These findings underscore the importance of understanding the regulatory role of viruses on microbial communities to effectively address the challenges posed by global change.

RevDate: 2025-08-21
CmpDate: 2025-08-21

Tang Z, Zhang Y, Shangguan H, et al (2025)

Urban organic manure application enhances antibiotic resistance gene diversity and potential human pathogen abundance in invasive giant African snails.

Journal of environmental sciences (China), 158:610-620.

The giant African snail (Achatina fulica) is an invasive species served as potential vectors for antibiotic resistance genes (ARGs) and potential human bacterial pathogens. Currently, urban green spaces receive extensive organic manure additions as part of their management, may intensify the biological contamination potential of these snail vectors, thereby increasing the risk of biological pollution in green spaces. However, the specific impacts of this practice on the microbial ecology of these invasive species remain poorly understood. Here, we investigated the effects of organic manure application on the gut microbiome of giant African snails, focusing on ARGs, bacterial community structure, and potential human bacterial pathogens. Microcosm experiments compared snail gut microbiomes in different treatments (Soil: soil samples collected after manure amendment, before any snail exposure. Feces: fecal samples collected from snails that lived on manure-amended soil. Control: fecal samples collected from snails that lived on unamended soil) using 16S rRNA high-throughput sequencing and metagenomic analysis. Our results show that manure application significantly altered gut bacterial community structure and increased ARG diversity by enriching specific high-risk ARGs (such as sul1 and sul2 in the Feces group increased by 2.89 and 2.43 times, respectively, compared to the Control group), and the introduction of eight novel ARG subtypes, despite decreasing overall ARG abundance. Moreover, the relative abundance of potential human pathogens, particularly Pseudomonadaceae, was greatly increased by manure application. These findings reveal that organic manure application in urban green spaces can potentially enhances their role as reservoirs and vectors of ARGs and human pathogens.

RevDate: 2025-08-21
CmpDate: 2025-08-21

Nie E, He P, Zhang H, et al (2025)

Genome-centric metagenomic analysis unveils the influence of temperature on the microbiome in anaerobic digestion.

Journal of environmental sciences (China), 158:516-526.

Temperature plays a crucial role in shaping microbial ecosystems during anaerobic digestion. However, the specific microbial communities and their functions across a wide temperature range still remain elusive. This study employed a genome-centric metagenomic approach to explore microbial metabolic pathways and synergistic networks at temperatures of 35, 44, 53, 55, and 65 °C. A total of 84 metagenome assembled genomes (MAGs) were assembled, with over 65 % of these MAGs corresponding to novel bacterial and archaeal species (including Firmicutes, Chloroflexota, Bacteroidia and Methanobacteriota), greatly enhancing our current comprehension anaerobic digestion process. Notably, functional annotation identified that 44_bin.2 (Methanothrix_A sp. 001602645) harbors enzymes associated with hydrogenotrophic metabolism. Additionally, this microorganism exhibited diverse metabolic capabilities at 44 °C, a temperature commonly employed in industrial practice yet less explored in bench studies. Consequently, it implies a promising potential for conducting anaerobic digestion at a moderate thermophilic temperature, as opposed to the conventional mesophilic range. The microorganism exhibited a variety of metabolic capabilities at 44 °C, a temperature frequently employed in industrial applications but underexplored in laboratory investigations. The findings suggest that anaerobic digestion carried out at moderate thermophilic temperatures may have a higher potential for methane production.

RevDate: 2025-08-21
CmpDate: 2025-08-21

Gao X, Zheng Y, Chang H, et al (2025)

Metagenomic Analysis of the Tonsil Virome Highlights Its Diagnostic Potential for Rheumatoid Arthritis.

Journal of medical virology, 97(8):e70570.

Rheumatoid arthritis (RA) is a chronic autoimmune disease whose exact pathogenesis remains unclear, despite links to genetics, environmental factors, and microbial dysbiosis. Recent studies have highlighted the role of the microbiome in RA, yet the contribution of the tonsil virome remains unexplored. This study aims to investigate whether changes in the tonsil virome are associated with RA progression and assess its diagnostic potential. Using metagenomic data from 32 RA patients and 30 healthy controls (HCs), we identified 45 782 viral operational taxonomic units (vOTUs), with 14 341 classified as core vOTUs. RA patients exhibited significantly reduced virome richness and diversity, whereas Siphoviridae and Microviridae dominated both groups. Statistical analysis identified 235 RA-associated viral markers, including 13 enriched in RA and 222 in HCs. RA-enriched markers were primarily bacteriophages infecting Streptococcaceae, whereas HCs displayed more diverse viral-host interactions. Random forest models demonstrated strong discriminatory power of viral markers in distinguishing RA patients from HCs, achieving an AUC of 0.960, outperforming bacterial markers. Correlation analyses further linked viral markers to immune cell subsets, suggesting that tonsil virome alterations may influence immune dysregulation in RA. This study reveals significant changes in the tonsil virome of RA patients, highlighting its potential as a diagnostic tool and offering new insights into RA pathogenesis. These findings pave the way for future research into the virome's role in autoimmune diseases and therapeutic development.

RevDate: 2025-08-21
CmpDate: 2025-08-21

Wang X, Dong Q, Huang P, et al (2025)

The genetic diversity and populational specificity of the human gut virome at single-nucleotide resolution.

Microbiome, 13(1):188.

BACKGROUND: Large-scale characterization of gut viral genomes provides strain-resolved insights into host-microbe interactions. However, existing viral genomes are mainly derived from Western populations, limiting our understanding of global gut viral diversity and functional variations necessary for personalized medicine and addressing regional health disparities.

RESULTS: Here, we introduce the Chinese Gut Viral Reference (CGVR) set, consisting of 120,568 viral genomes from 3234 deeply sequenced fecal samples collected nationwide, covering 72,751 viral operational taxonomic units (vOTUs), nearly 90% of which are likely absent from current databases. Analysis of single-nucleotide variations (SNVs) in 233 globally prevalent vOTUs revealed that 18.9% showed significant genetic stratification between Chinese and non-Chinese populations, potentially linked to bacterial infection susceptibility. The predicted bacterial hosts of population-stratified viruses exhibit distinct genetic components associated with health-related functions, including multidrug resistance. Additionally, viral strain diversity at the SNV level correlated with human phenotypic traits, such as age and gastrointestinal issues like constipation. Our analysis also indicates that the human gut bacteriome is specifically shaped by the virome, which mediates associations with human phenotypic traits. Video Abstract CONCLUSIONS: Our analysis underscores the unique genetic makeup of the gut virome across populations and emphasizes the importance of recognizing gut viral genetic heterogeneity for deeper insights into regional health implications.

RevDate: 2025-08-21
CmpDate: 2025-08-21

Eckl-Dorna J, P Pjevac (2025)

[Principles of microbiome research].

HNO, 73(9):605-609.

Microbiome research in the ear nose and throat (ENT) field has substantially gained in importance in recent decades. Modern sequencing methods have largely replaced traditional cultivation. Standardized protocols are essential to ensure reliable and comparable data. The article explains key terms, such as microbiome (the entire microbial community and its environment) and microbiota (only living microorganisms), along with the microbial taxonomy. Important measures for microbiome assessment include the alpha-diversity (species richness and distribution within a sample) and beta-diversity (differences between samples). A differentiation is made between two main approaches to microbiome sequencing: 1) 16S rRNA gene amplicon sequencing (identifies microbial community composition by sequencing the PCR product of a specific gene), 2) metagenomic sequencing (sequences the entire genomic material of a sample, allowing deeper insights). As nasal microbiome biomass is low, careful study design and controls are crucial. Microbiome research is a rapidly growing field with great potential but it requires meticulous planning and bioinformatics expertise for meaningful results.

RevDate: 2025-08-21
CmpDate: 2025-08-21

Göçer S, Arı O, Göçer C, et al (2025)

Metagenomic analysis of the middle ear microbiome: A next-generation sequencing approach in pediatric patients with and without effusion.

International journal of pediatric otorhinolaryngology, 196:112487.

OBJECTIVES: Otitis media with effusion (OME) is one of the most common causes of reversible hearing loss in childhood. In recent years, host-microbiota interactions and alterations in microbiota composition associated with health and disease have gained increasing attention in the context of OME. This study aimed to investigate the bacterial microbiota composition of middle ear cavity (MEC) samples obtained from pediatric patients with and without OME. Microbiome differences were analyzed according to clinical groups and variables such as age and gender.

METHODS: 16S rRNA-based metagenomic sequencing was performed on MEC samples (n = 80) and nasopharyngeal samples (n = 20) obtained from 80 children-40 diagnosed with bilateral or unilateral OME (OME group) and 40 undergoing cochlear implant surgery without any history of otitis media (control group). The study cohort included 37 males and 43 females, aged between 2 and 11 years (mean age: 5.2 years).

RESULTS: Sequencing analysis revealed that the phyla Firmicutes and Proteobacteria were dominant in MEC samples. In the OME group, Firmicutes were significantly more abundant, whereas Proteobacteria levels were reduced. At the genus level, Alloiococcus was significantly enriched in the OME group, while genera considered potentially protective, such as Lactobacillus and Propionibacterium, were significantly decreased. Age was not significantly associated with microbial richness or evenness, suggesting stability of microbiota composition across age groups. However, a significantly higher relative abundance of Ralstonia was observed in female patients, suggesting that gender-related hormonal or immunological differences may influence the middle ear microbiota.

CONCLUSION: This study identifies a distinct microbiota profile associated with OME and suggests that host factors, particularly gender, may contribute to shaping the microbial and immunological landscape of the middle ear. These findings also indicate that the microbial environment in OME may shift toward a low-diversity, pathobiont-dominant state.

RevDate: 2025-08-21
CmpDate: 2025-08-21

Kust A, Zorz J, Paniker CC, et al (2025)

Model cyanobacterial consortia reveal a consistent core microbiome independent of inoculation source or cyanobacterial host species.

The ISME journal, 19(1):.

Cyanobacteria are integral to biogeochemical cycles, influence climate processes, and hold promise for commercial applications. In natural habitats, they form complex consortia with other microorganisms, where interspecies interactions shape their ecological roles. Although in vitro studies of these consortia have significantly advanced our understanding, they often lack the biological replication needed for robust statistical analysis of shared microbiome features and functions. Moreover, the microbiomes of many model cyanobacterial strains, which are central to our understanding of cyanobacterial biology, remain poorly characterized. Here, we expanded on existing in vitro approaches by coculturing five well-characterized model cyanobacterial strains with microorganisms filtered from three distinct freshwater sources, generating 108 stable consortia. Metagenomic analyses revealed that, despite host and inoculum diversity, these consortia converged on a similar set of noncyanobacterial taxa, forming a 25-species core microbiome. The large number of stable consortia in this study enabled statistical validation of both previously observed and newly identified core microbiome functionalities in micronutrient biosynthesis, metabolite transport, and anoxygenic photosynthesis. Furthermore, core species showed significant enrichment of plasmids, and functions encoded on plasmids suggested plasmid-mediated roles in symbiotic interactions. Overall, our findings uncover the potential microbiomes recruited by key model cyanobacteria, demonstrate that laboratory-enriched consortia retain many taxonomic and functional traits observed more broadly in phototroph-heterotroph assemblages, and show that model cyanobacteria can serve as robust hosts for uncovering functional roles underlying cyanobacterial community dynamics.

RevDate: 2025-08-20
CmpDate: 2025-08-20

Kaspersen HP, Estensmo EL, Slettemeås JS, et al (2025)

Monensin phase-out in Norwegian turkey production decreases Bifidobacterium spp. abundance while enhancing microbial diversity.

Microbial genomics, 11(8):.

Intestinal tissue damage caused by coccidiosis is an important predisposing factor for necrotic enteritis in turkeys, and both diseases are common health issues in turkey production. In Norway, the in-feed ionophore coccidiostat monensin has been used as a preventive measure to combat coccidiosis since the late 1980s. In 2022, however, preventive use of monensin was phased out, which led to an undesired increase in antibiotic treatments among turkey flocks, largely due to necrotic enteritis. The aim of this study was to investigate the overall effects of the preventive monensin use and antibiotic treatment on the turkey caecal microbiota. A total of 102 flock samples from the Norwegian turkey population were included, and metagenomic datasets were generated through shotgun sequencing. All datasets were processed with the Taxprofiler pipeline, followed by diversity, redundancy and differential abundance analyses in R. A significant decrease in alpha and beta diversity was observed for the caecal samples from turkeys exposed to monensin, compared with the non-exposed. An increased abundance of Bifidobacterium spp. was observed in the samples from monensin-exposed turkeys, including Bifidobacterium pullorum, Bifidobacterium longum, Bifidobacterium pseudolongum, Bifidobacterium pseudocatenulatum and Bifidobacterium animalis. Additionally, a decrease in Megamonas and Megasphaera species was detected in these samples. Further, species within the Clostridium genus were higher in abundance among the samples from female turkeys compared with male turkeys. The results indicate that the use of monensin seems to decrease the overall diversity and promote the abundance of Bifidobacterium spp. in the caecum of turkeys, while decreasing the abundance of Megamonas and Megasphaera species. The use of monensin may be beneficial for the gut microbiota due to an increase in favourable Bifidobacterium spp. In contrast, treatment with phenoxymethylpenicillin (penicillin V) early in the turkey life cycle does not seem to cause long-term changes in the caecal microbiota composition. However, further studies are needed to investigate the effects of a decreased abundance of Bifidobacterium spp. and increased gut microbiota diversity in turkeys in the absence of monensin use.

RevDate: 2025-08-20
CmpDate: 2025-08-20

Fong GY, Chan KG, Goh WL, et al (2025)

Metagenomic profiling of pigeon faecal microbiota: insights into microbial diversity, pathogens, and antimicrobial resistance genes.

Antonie van Leeuwenhoek, 118(9):134.

Rock pigeon (Columba livia) droppings harbour diverse microorganisms, including potential pathogens. This study utilised shotgun metagenomic sequencing to analyse pigeon faecal microbiota and identify potential pathogens. Fresh faecal samples (273) were collected within Universiti Tunku Abdul Rahman Kampar campus, Malaysia. Total genome and viral genomes were extracted and sequenced using the Illumina NovaSeq 6000 platform. Taxonomic assignment, antimicrobial resistance (AMR) gene detection, and viral genome assembly were conducted using the CZ ID platform. The microbial diversity was predominated by bacteria, followed by eukaryotic viruses and fungi, with no archaea were detected. Pseudomonadota (84.44%) and Bacillota (15.26%) were the predominant bacterial phyla, with Pseudomonadota being 5.5 times more abundant, indicating potential enteric-like issues within the pigeon flocks. Approximately 5.11% of the bacterial community (comprising 38 species), was identified as potential pathogens, could primarily cause human enteric and respiratory infections. Nineteen AMR genes were detected, primarily associated with pathogenic Shigella, Salmonella, and Klebsiella. The presence of AMR genes and possible co-circulation among pathogenic bacteria impose the risk of emergence of multidrug-resistant bacteria. Nine avian virus species were detected. The predominant DNA virus, pigeon circovirus (73.23%) could cause immunosuppression, predisposing pigeons to secondary infections by E. coli, K. pneumoniae, and rotaviruses. The predominant RNA virus, rotaviruses (80.43%) could cause enteric diseases in both humans and birds. The fungal community comprised Kazachstania (94.11%) and Trichosporon (3.56%), with K. bovina and T. asahii identified as human pathogens. This study highlights the compelling need for effective pigeon control in dining areas, ventilation systems, and healthcare facilities.

RevDate: 2025-08-20
CmpDate: 2025-08-20

Zhou W, Fan Y, Zhang X, et al (2025)

Amelioration of Guishao Yigong Decoction on Colorectal Cancer Through the Integration of 16S rRNA Sequencing and Fecal Metabolomics.

Biomedical chromatography : BMC, 39(10):e70198.

Guishao Yigong Decoction (GYD), a classical formula, has been used to treat colorectal cancer (CRC) in clinical practices. However, its mechanism is still unclear. Increasing evidence suggests that the gut microbiota may serve as a potential target for treating CRC. Therefore, this study aims to elucidate the amelioration and potential mechanism of GYD on CRC by comprehensively analyzing the metagenome of gut microbiota and fecal metabolome. The results indicated that GYD significantly reduced the number and size of adenomas in the mouse colon, decreased spleen index, alleviated mouse emaciation and rectal bleeding, and protected the colonic barrier. 16S rRNA gene sequencing analysis revealed that GYD could markedly improve the dysbiosis of gut microbiota in CRC mice, increasing the abundance of beneficial bacteria and decreasing the abundance of pathogenic bacteria. Furthermore, the disordered fecal metabolic profiling of CRC mice was notably reversed by GYD. Following GYD administration, metabolites such as thiamine pyrophosphate, 3-methylpentanoic acid, and propanoic acid significantly increased, whereas 2-hydroxy-2-methylpropanoic acid, levodopa, and stearic acid remarkably decreased. Correlation analysis further indicated a close relationship between differential gut microbiota and metabolites. In conclusion, the amelioration of GYD on CRC might involve the regulation of gut microbiota and its metabolism.

RevDate: 2025-08-20
CmpDate: 2025-08-20

Tian Y, Xu Q, Wu Z, et al (2025)

Ameliorating Effect of Bifidobacterium breve CM02-09T on High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Mice.

FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 39(16):e70957.

Evidences have demonstrated that the regulation of gut microbiota by probiotics can be utilized to prevent nonalcoholic fatty liver disease (NAFLD); Bifidobacterium was widely used as a potential therapeutic alternative for metabolic diseases. In this study, the probiotic functions of Bifidobacterium breve CM02-09T and its effects on NAFLD were investigated through genome annotation and high-fat diet (HFD)-induced mouse model. The genome of B. breve CM02-09T consists of a single circular chromosome of 2 372 890 bp. Eighteen male C57BL/6J mice were fed a normal chow diet (NCD), a high-fat diet, and a high-fat diet (HFD) with B. breve CM02-09T separately for 12 weeks. Histopathology, lipid content, biochemical markers in the liver and blood, and metagenomics were assessed and compared. Our results indicate that supplementation with B. breve CM02-09T alleviated liver damage, reduced fat accumulation in the liver and epididymal adipose tissue, decreased TNF-α concentration, and improved NAFLD activity scores. Metagenomic analysis revealed that administration of B. breve CM02-09T promoted a decreased Firmicutes/Bacteroidetes ratio (F/B), an increase in beneficial bacteria, and enhanced lipid metabolism functions. Correlation analysis between the differential species and NAFLD-related indicators suggested that the anti-NAFLD effect of B. breve CM02-09T is related to the gut microbiota. Therefore, B. breve CM02-09T attenuates NAFLD by modulating the gut microbiota and could be used as an alternative therapeutic strategy.

RevDate: 2025-08-20
CmpDate: 2025-08-20

Park HS, Chavarria X, Shatta A, et al (2025)

Distinct microbial communities of drain flies (Clogmia albipunctata) across sites with differing human influence.

FEMS microbiology letters, 372:.

Drain flies (Clogmia albipunctata) are insects that thrive in humid urban environments such as bathrooms drains and sewage systems. While their role in pathogen transmission has been suggested, little is known about their microbiome or ecology in non-clinical contexts. Using 16S rRNA gene metabarcoding, we characterized the bacterial communities of drain flies from three locations in South Korea, public bathrooms from a college in Seoul, a rural port in Ulleungdo island, and a highly frequented public park in Yeouido. In total, we obtained 221 families and 1 474 features. We found significant differences in microbiome composition and diversity as well as a small core microbiome shared among locations, with environmental bacteria such as Pseudomonas and Ralstonia being the dominant taxa across samples. The majority of the detected amplicon sequence variants (ASV) were not shared among locations. These findings suggest drain fly transport a location-specific environmental bacteria. Notably, we also identified ASVs of potential clinical relevance, including Mycobacterium, Acinetobacter baumanii, Providencia, and Nocardia. This is the first metagenomic insight into the microbiome of this species and adds to a renewed interest in the role that non-hematophagous insects play in urban microbial ecology and the spread of microbes.

RevDate: 2025-08-20
CmpDate: 2025-08-20

Liang J, He J, Zhao J, et al (2025)

Decline in the Relative Abundance of Antibiotic Resistance Genes in Long-Term Fertilized Soil and Its Driving Factors.

Journal of agricultural and food chemistry, 73(33):20710-20718.

The changes in antibiotic resistance genes (ARGs) in long-term fertilized soil remain controversial. We aimed to analyze the variation characteristics of ARGs in long-term fertilized soil using metagenomic sequencing. The relative abundance of ARGs did not increase significantly after 7 years of fertilization. However, a clear decline in the relative abundance of ARGs was observed compared to the data from the 4th year. Microbial adaptation strategies in response to changes in the ARG abundance were associated with shifts in microbiome composition and function. Among these, bacterial abundance was the primary driving factor. Additionally, total heavy metal content might serve as the most significant co-selective pressure influencing ARG number. We believe that increasing the selective pressure from heavy metals and antibiotics might result in the loss of certain microbial species and a decrease in ARG abundance. This study provides novel insights into the variations of soil resistance genes under long-term fertilization.

RevDate: 2025-08-20
CmpDate: 2025-08-20

Touceda-Suárez M, Ponsero AJ, A Barberán (2025)

Differences in the genomic potential of soil bacterial and viral communities between urban greenspaces and natural arid soils.

Applied and environmental microbiology, 91(8):e0212424.

Urban green spaces provide essential ecosystem services that are ever more important in arid cities. However, the design and management of these greenspaces often require physicochemical transformations, whose effect in the balance of the arid urban ecosystems is normally not accounted for. In this project, we leverage metagenomic data from soil microbial communities of urban greenspaces and neighboring natural areas in a city from the arid Southwestern USA (Tucson, Arizona) to understand the differences in microbial (bacterial and viral) community structure, taxonomy, and function in urban greenspaces compared to natural arid soils. We found bacterial and viral communities to be distinct between urban greenspace and natural arid soils, with urban greenspace bacteria displaying reduced metabolic versatility and higher genetic potential for simple carbohydrate consumption and nitrogen reduction. Moreover, bacteria in urban greenspaces exhibit higher genetic potential for resistance to heavy metals and certain clinical antibiotics. Our results suggest that the conversion of arid natural land to urban greenspaces determines the soil microbiome structure and functioning, and potentially its ability to adapt to the changing environment.IMPORTANCEUrban green spaces are critical for the sustainability of arid cities. Nevertheless, they require deep soil physicochemical transformations. Soil bacterial and viral communities are responsible for soil functioning and provision of some ecosystem services, but they are also highly influenced by changes in the soil environment. The significance of our research is in illustrating the structural and functional changes that microbial and viral communities undergo in urban soils of arid cities and their potential impacts on urban greenspace soil processes.

RevDate: 2025-08-20
CmpDate: 2025-08-20

Zhang T, Liu Y, Li J, et al (2025)

Toad's survivability and soil microbiome alterations impacted via individual abundance.

Biologia futura, 76(3):399-411.

Artificial breeding is a valid strategy for the reverse of current extinction tendency in wild population of amphibian like toads. Considering public health, an alternative to antibiotics is demanded for ameliorating survival of toads during the culture period. Relying on the cognition of probiotics or antagonistic bacteria, the present work investigated viability and soil microorganism variations induced by distribution characteristic on toads using high-throughput sequencing technology. Comparison and analysis of soil metagenome from clustered and depopulated groups distinguished by toad behavior showed differences of bacterial community composition (e.g., Proteobacteria bacterium TMED72 and Nannocystis exedens) and antibiotic resistance genes involving antibiotic efflux and inactivation (e.g., mdtB and acrF). There were 18 and 10 distribution-typical genes independently enriched in Proteobacteria bacterium TMED72 and bacterium TMED88 of clustered group and Nannocystis exedens of depopulated group. In Nannocystis exedens, one of the distribution-typical genes was annotated as 6-phosphogluconate dehydrogenase acting role on bacterial growth restriction. It implied that, compared with the group emerging rare traces, the reduction of soil bacteria which possess genes retarding bacterial growth putatively impairs competitiveness to pathogenic bacteria and results in poor survivability of toads under clustering behavior. With the co-occurrence of virulence genes, more evidences are needed on the antagonistic bacteria Nannocystis exedens as antibiotic substitute.

RevDate: 2025-08-20
CmpDate: 2025-08-20

Panicucci C, Casalini S, Fiorito G, et al (2025)

Exploratory Analysis of Gut Microbiota Profile in Duchenne Muscular Dystrophy (DMD) Patients with Intellectual Disability.

Molecular neurobiology, 62(9):11799-11809.

This study investigates the differences in gut microbiota composition between DMD patients with (DMD +) and without (DMD -) intellectual disability (ID) and its potential role in cognitive outcomes. In this study, we assessed the gut microbiota in 50 genetically confirmed DMD patients (median age 13.1 years) using 16S rRNA gene sequencing. Cognitive assessment was performed using the Wechsler Intelligence Scales, with ID defined as an IQ < 70. Stool samples were analyzed, and statistical methods were used to assess alpha- and beta-diversity. Thirty-four percent of patients had ID. No significant differences were found in alpha-diversity or in the Firmicutes/Bacteroidetes ratio. However, beta-diversity analysis revealed significant differences between DMD + and DMD - groups, including, in DMD + , an increased abundance of Propionibacterium and Bifidobacterium, and a reduction in Bulleidia. These bacteria are involved in metabolic pathways that can influence neurological health through the gut-brain axis, particularly via the production of short-chain fatty acids. While these preliminary findings suggest a possible association between gut microbiota profile and cognitive impairment in DMD, further research is needed to explore a causal relationship and consider microbiota-targeted therapeutic strategies.

RevDate: 2025-08-20
CmpDate: 2025-08-20

Dame-Teixeira N, Lynch J, Yu X, et al (2025)

The Caries and Caries-Free Archaeome.

Journal of dental research, 104(10):1138-1146.

The difficulty of establishing a relationship between archaea and oral diseases such as dental caries stems from the challenges of detecting, identifying, and isolating these microorganisms. This study aimed to detect archaea in publicly available datasets comprising caries and caries-free saliva and dental plaque by using a tailored bioinformatic pipeline for shotgun sequencing analysis. A systematic search was performed to identify studies using shotgun metagenomics or metatranscriptomics on samples obtained from individuals with dental caries. Two reviewers selected studies based on eligibility criteria. Sequencing and metadata from each study were retrieved from the SRA Bioproject. A count table was generated for each database by mapping reads against an archaea genome database, specifically tailored for this study, using stringent filtering parameters of greater than 97% similarity and 90% query coverage. Archaeal prevalence was determined using an arbitrary cutoff point (>500 reads). An effect size meta-analysis was performed to determine the overall prevalence. Phyloseq and DESeq2 packages were used to determine alpha and beta diversities, differential abundance in different taxonomic levels, and differential expression comparing caries and caries-free samples. Spearman correlation was performed with the bacteriome. The search yielded 154 titles, from which a collection of 7 datasets from 8 studies was obtained. Of 397 samples, N = 63 were positive for archaea using postfiltering, comprising a putative prevalence of 20% (confidence interval = 0%-40%) and identifying Euryarchaeota, Thermoplasmatota, and Nitrosphaeria. Methanogens were present in both the caries and caries-free groups (Methanobrevibacter spp., Methanosarcina, and Methanosphaera) and positively correlated with Stenotrophomonas, Streptococcus, Actinomyces, Abiotrophia, Gemella, and Corynebacterium. Several methanogenesis genes, including methyl-coenzyme M reductase, which catalyzes the final step of methane production in methanogens, were underexpressed in caries-active samples compared with caries-free samples. Saliva and dental plaque emerged as sites of low-abundance archaea, with methanogenesis genes underexpressed in caries-active samples.

RevDate: 2025-08-19
CmpDate: 2025-08-20

Marialva EF, Martins-Campos KM, de Almeida VR, et al (2025)

Investigation of bacterial microbiota variability in two allopatric populations of Nyssomyia umbratilis, susceptible and nonsusceptible to Leishmania (Viannia) guyanensis infection in the Amazon region.

Parasites & vectors, 18(1):354.

BACKGROUND: Sand flies of the species Nyssomyia umbratilis (Diptera: Psychodidae: Phlebotominae) are vectors of the parasite Leishmania (Viannia) guyanensis, one of the etiological agents of cutaneous leishmaniasis in the Amazon region. In addition, Ny. umbratilis is a cryptic species, with populations showing differences in their ability to transmit the parasite. For instance, populations of Ny. umbratilis from the Manacapuru municipality (MAN), located on the south bank of the Negro river, in the Amazonas state of Brazil, shows refractoriness to Leishmania infection, while populations from Rio Preto da Eva municipality (RPE), located on the north bank of the Negro river, are susceptible to infection. This lack of vectorial capacity may be caused by several factors, including the intestinal bacterial microbiota of sand flies.

METHODS: In this work, we carried out a metagenomic study of the intestinal microbiota of Ny. umbratilis populations from MAN and RPE. Ny. umbratilis females were collected in forested areas, sand fly midguts were dissected, DNA was extracted, and the 16 S rRNA gene sequenced to identify the bacterial composition of the microbiota.

RESULTS: In total, 16 phyla, 33 classes, 49 orders, 93 families, and 112 genera of bacteria were identified. The phylum Proteobacteria was the most frequent (85.9%) in both localities, followed by the phyla Bacteroidetes, Actinobacteria, and Firmicutes with, 9.9%, 4.9%, and 4.4%, respectively. In MAN, 84 genera were identified and 79 in RPE, with MAN having a greater richness compared with RPE. Among these, the genera Rickettsia, Prevotella, Porphyromonas, Peptostreptococcus, and Caulobacter were the most prevalent in MAN, and the genera Rickettsia, Prevotella, Cryocola, Porphyromonas, and Caulobacter were the most prevalent in RPE.

CONCLUSIONS: Bacterial microbiota from MAN insects presents a greater diversity in relation to the RPE insects. Some of the identified bacteria have the potential to be used in alternative transmission control approaches as the development of transgenic vectors, and also, bacteria found exclusively in MAN sand flies may be candidates for a future transmission control approach to combat leishmaniasis in the Amazon region.

RevDate: 2025-08-19
CmpDate: 2025-08-19

Huang WC, A Spang (2025)

DPANN archaea.

Current biology : CB, 35(16):R791-R794.

Archaea are one of the two primary domains of life alongside Bacteria. Extant archaea play an important role in global nutrient cycles and comprise members that were crucial for the evolution of life on Earth including the origin of eukaryotic cells through a symbiotic integration of an archaeal and bacterial partner. Despite their importance in ecology and evolution, our knowledge of archaeal diversity and function remains limited in part because it has proven challenging to cultivate archaea in the laboratory. Over the last two decades, the use of novel cultivation-independent approaches such as metagenomics has not only led to the discovery of a vast diversity of previously unknown archaeal lineages but also provided a window into their genomic content, allowing researchers to make predictions about metabolic functions and lifestyles. For example, by combining genomics approaches with phylogenetic analyses (that is, the reconstruction of species trees) researchers have uncovered several phylum-level lineages of putative genome-reduced archaea referred to as the 'DPANN' archaea, whose members were shown to have limited metabolic capabilities, indicating their dependency on symbiotic partners. These findings are consistent with observations from cultivation-based studies that have succeeded in enriching some of these small-cell symbionts in co-cultures with their hosts. Although they were initially discovered in extreme environments, DPANN archaea have now been shown to be widespread across a variety of environments and may thus play an important role in not only host evolution but also ecology. Herein, we aim to highlight DPANN archaea by providing an overview of their diversity, genomic and metabolic features, unique cell biology and interactions, and evolutionary origins. We also underscore several fascinating topics that remain underexplored.

RevDate: 2025-04-20

Zaharuddin AM, Muslim A, Aazmi S, et al (2025)

Probiotic Lactobacillus rhamnosus GG Alleviates Prehypertension and Restores Gut Health and Microbiota in NaCl-Induced Prehypertensive Rats.

Probiotics and antimicrobial proteins [Epub ahead of print].

Probiotics could be used as adjuvant treatments in prehypertension management to restore gut microbiota dysbiosis caused by a high-salt diet. This study investigated the antihypertensive effects of the probiotic Lactobacillus rhamnosus strain GG (LGG) on high-salt diet-induced prehypertensive rats. Eighteen Sprague-Dawley rats were assigned equally into three groups: normotensive fed on a normal diet (ND), prehypertensive induced on a 4% NaCl high-salt diet (HSD), and prehypertensive induced on an HSD treated with LGG at 1 × 10[9] CFU daily for 8 weeks (LGG). Weekly changes in water, food, body weight, diastolic blood pressure (DBP), systolic blood pressure (SBP), and mean arterial pressure (MAP) were monitored. Serum levels of Na, K, Cl, ALB, Ca, and TP were measured at the end of treatment, along with morphological and histomorphometric changes in the small intestine. Stool samples collected before (W0) and 8 weeks after treatment (W8) were sequenced for bacterial 16S rDNA metagenomics. Probiotic LGG significantly reduces average DBP, SBP, and MAP while improving gut integrity through intact intestine morphology, higher villus heights, and a V/C ratio. At the genus level, the LGG group's gut microbiota composition is more similar to the HSD profile at W0 but shifts to the ND profile after treatment at W8. Thus, probiotic LGG lowers blood pressure indices, improves serum biochemistry profile, restores small intestinal integrity barrier, and modulates gut microbiota profile, indicating its potential as an adjuvant treatment for prehypertension and the significance of gut health in blood pressure regulation.

RevDate: 2025-08-05
CmpDate: 2025-07-22

Pietrasanta C, Ronchi A, Carlosama C, et al (2025)

Effect of prenatal antibiotics on breast milk and neonatal IgA and microbiome: a case-control translational study protocol.

Pediatric research, 97(7):2267-2271.

BACKGROUND: Up to 25-35% of women receive antibiotics (ABX) during pregnancy, but little is known about the consequences on a key mucosal interface such as the mammary gland, and on the development of the neonatal gut's microbiota and IgA. We hypothesize that prenatal ABX negatively affect the immune functionality of mammary gland, the composition of breast milk microbiota, the development of neonatal fecal microbiota and the abundance of neonatal fecal IgA.

METHODS: Case-control translational cohort study on women and neonates in the presence or absence (N = 41 + 41 pairs) of exposure to prenatal ABX for at least 7 consecutive days after 32 weeks of gestation.

RESULTS: We will evaluate IgA concentration in breast milk and in neonatal feces up to one year after delivery. We will also evaluate clinical parameters, neurodevelopment and the composition of the IgA-coated and uncoated fractions of breast milk and fecal microbiota by means of magnetic-activated cell sorting (MACS) coupled with shotgun metagenomics. Finally, we will measure the concentration of the chemokine CCL28 on maternal serum and breast milk, as a marker of activity of the entero-mammary pathway.

CONCLUSIONS: Our results might support a data-driven evaluation of breast milk immune function in women exposed to prenatal ABX.

IMPACT: Breast milk IgA and microbiota are critical to determine the positive effects of breastfeeding in infants. This research protocol will investigate breast milk IgA, microbiota, and the IgA[+] / IgA[-] fractions of neonatal fecal microbiota upon exposure to prenatal antibiotics. Fecal IgA and microbiota in infants exposed or not exposed to prenatal antibiotics will be analyzed up to 1 year after birth. This research will clarify the impact of prenatal antibiotics on the immune function of breast milk. This, in turn, might support the selective evaluation of breast milk IgA/microbiota in mothers exposed to prenatal antibiotics, or in donor human milk.

RevDate: 2021-07-06
CmpDate: 2021-07-06

Mokkala K, Houttu N, Koivuniemi E, et al (2020)

GlycA, a novel marker for low grade inflammation, reflects gut microbiome diversity and is more accurate than high sensitive CRP in reflecting metabolomic profile.

Metabolomics : Official journal of the Metabolomic Society, 16(7):76.

INTRODUCTION: Gut microbiota is, along with adipose tissue, recognized as a source for many metabolic and inflammatory disturbances that may contribute to the individual's state of health.

OBJECTIVES: We investigated in cross-sectional setting the feasibility of utilizing GlycA, a novel low grade inflammatory marker, and traditional low grade inflammatory marker, high sensitivity CRP (hsCRP), in reflecting serum metabolomics status and gut microbiome diversity.

METHODS: Fasting serum samples of overweight/obese pregnant women (n = 335, gestational weeks: mean 13.8) were analysed for hsCRP by immunoassay, GlycA and metabolomics status by NMR metabolomics and faecal samples for gut microbiome diversity by metagenomics. The benefits of GlycA as a metabolic marker were investigated against hsCRP.

RESULTS: The GlycA concentration correlated with more of the metabolomics markers (144 out of 157), than hsCRP (55 out of 157) (FDR < 0.05). The results remained essentially the same when potential confounding factors known to associate with GlycA and hsCRP levels were taken into account (P < 0.05). This was attributable to the detected correlations between GlycA and the constituents and concentrations of several sized VLDL-particles and branched chain amino acids, which were statistically non-significant with regard to hsCRP. GlycA, but not hsCRP, correlated inversely with gut microbiome diversity.

CONCLUSION: GlycA is a superior marker than hsCRP in assessing the metabolomic profile and gut microbiome diversity. It is proposed that GlycA may act as a novel marker that reflects both the gut microbiome and adipose tissue originated metabolic aberrations; this proposal will need to be verified with regard to clinical outcomes.

CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, NCT01922791, August 14, 2013.

RevDate: 2025-08-18

Kaushal M, Kolombia YA, Alakonya AE, et al (2025)

Comparing soil microbial diversity in smallholder plantain backyard gardens and main farms in Western and Central Africa.

Scientific reports, 15(1):30220.

In sub-Saharan Africa (SSA), plantains (Musa spp.) are a staple crop and a vital source of income for smallholder farmers. Despite their importance, the microbial diversity of soils in plantain-growing agroecologies remains poorly understood-particularly how it may influence plant performance and resilience through soil-plant interactions. In this study, we used Illumina MiSeq-based 16S rDNA sequencing to characterize bacterial communities in the rhizosphere of plantains cultivated under two distinct agroecological settings: Backyard gardens and main farms. Analyses of alpha and beta diversity (Sobs, Chao1, ACE, Shannon-Wiener, and Simpson indices; P < 0.05) revealed significant differences in species richness and community structure between the two agroecologies. Actinobacteria (55%) emerged as the dominant phylum, followed by Proteobacteria (21%) and Acidobacteria (15%). Beneficial genera such as Bacillus, Streptomyces, Bradyrhizobium, and Paenibacillus were also detected. Functional predictions based on COG and KEGG databases indicated notable differences in microbial functional potential between the two settings. These results suggest that agroecological context and habitat type strongly influence rhizosphere microbial diversity, with important implications for enhancing plant-microbe interactions and supporting crop resilience in SSA's resource-limited smallholder systems.

RevDate: 2025-08-15

Chen Y, Huang S, Lu X, et al (2025)

Viral metagenomics reveals parvovirus dark matter of herbivorous wildlife from the Qinghai-Tibet Plateau.

BMC microbiology, 25(1):508.

BACKGROUND: As one of the birthplaces of modern biodiversity, the Qinghai-Tibet Plateau is home to a rich variety of unique animal groups. Herbivorous wildlife constitutes a vital component of the plateau's ecosystems, yet current research on parvoviruses in these species remains limited. With the development of viral metagenomics and next-generation sequencing technology, more and more novel viruses have been detected.

RESULTS: In this study, we collected 741 fecal samples from herbivorous wildlife across three distinct habitats on the Qinghai-Tibet Plateau and employed metagenomics analysis technology to characterize the parvovirus dark matter. We identified 32 parvoviruses by analysis, of which 13 were closely related to the members of Bocapavovirus, Dependoparvovirus and Protoparvovirus in the subfamily of Parvovirinae, 5 belonging to the Densovirinae subfamily, and 5 were classified into the newly proposed subfamily of Hamaparvovirinae. Additionally, 9 parvoviruses remain unclassified and cannot be assigned to any existing subfamily. We conducted a phylogenetic analysis based on the non-structural proteins of the viruses to explore the evolutionary relationships among parvoviruses, and found that some viruses could not be clustered with known parvoviruses.

CONCLUSIONS: These results enrich our understanding of parvovirus and viral dark matter, and reveal that these wild animals carry a large number of unknown new viruses that may have implications for the ecological balance of the Qinghai-Tibet Plateau.

RevDate: 2025-08-12

Huang WC, Probst M, Hua ZS, et al (2025)

Phylogenomic analyses reveal that Panguiarchaeum is a clade of genome-reduced Asgard archaea within the Njordarchaeia.

Molecular biology and evolution pii:8232785 [Epub ahead of print].

The Asgard archaea are a diverse archaeal phylum important for our understanding of cellular evolution because they include the lineage that gave rise to eukaryotes. Recent phylogenomic work has focused on characterising the diversity of Asgard archaea in an effort to identify the closest extant relatives of eukaryotes. However, resolving archaeal phylogeny is challenging, and the positions of two recently-described lineages - Njordarchaeales and Panguiarchaeales - are uncertain, in ways that directly bear on hypotheses of early evolution. In initial phylogenetic analyses, these lineages branched either with Asgards or with the distantly-related Korarchaeota, and it has been suggested that their genomes may be affected by metagenomic contamination. Resolving this debate is important because these clades include genome-reduced lineages that may help inform our understanding of the evolution of symbiosis within Asgard archaea. Here, we performed phylogenetic analyses revealing that the Njordarchaeales and Pangiuarchaeales constitute the new class Njordarchaeia within Asgard archaea. We found no evidence of metagenomic contamination affecting phylogenetic analyses. Njordarchaeia exhibit hallmarks of adaptations to (hyper-)thermophilic lifestyles, including biased sequence compositions that can induce phylogenetic artifacts unless adequately modelled. Panguiarchaeum is metabolically distinct from its relatives, with reduced metabolic potential and various auxotrophies. Phylogenetic reconciliation recovers a complex common ancestor of Asgard archaea that encoded the Wood-Ljungdahl pathway. The subsequent loss of this pathway during the reductive evolution of Panguiarchaeum may have been associated with the switch to a symbiotic lifestyle potentially based on H2-syntrophy. Thus, Panguiarchaeum may contain the first obligate symbionts within Asgard archaea.

RevDate: 2025-08-12

Teng ZJ, Yuan XJ, Liu R, et al (2025)

Inositol phosphates as an overlooked phosphorous source in marine ecosystems.

The ISME journal pii:8230275 [Epub ahead of print].

Inositol phosphates, common phosphorus storage compounds that are also crucial for eukaryotic cell signaling, constitute a significant portion of dissolved organic phosphorus in coastal waters. The hydrolysis of inositol phosphates could be an important contributor to phosphorus cycling in phosphorus-limited marine ecosystems, yet this process remains poorly understood in marine contexts. In this study, we reveal substantial concentrations of Inositol phosphates in marine macrophytes, including green, brown, and red algae as well as common seagrasses, suggesting that these organisms are likely major biological sources of inositol phosphates in the oceans. A comprehensive analysis of genes involved in inositol phosphates hydrolysis in global marine metagenomes and metatranscriptomes identified key roles for γ-, α-, and δ-proteobacteria, with additional contributions from Flavobacteriia. The degradation of marine inositol phosphates was predominantly mediated by alkaline β-propeller phytases, though genes associated with acidic cysteine phytases and purple acid phytases were also widely present. Community structure and functional traits linked to inositol phosphates degradation were shaped largely by stochastic processes. Further examination of enzyme activity at the protein and community levels indicated that phytate metabolism by marine microbes is likely a widespread phenomenon in the ocean. Overall, this study highlights inositol phosphates hydrolysis as an essential yet overlooked adaptation by marine microorganisms to address phosphorus limitations in ocean ecosystems.

RevDate: 2025-08-12

D'Ugo E, Mukherjee A, Resitano M, et al (2025)

Fishing out microorganisms for bioremediation using metagenomics: Isolation and whole-genome sequencing of the metabolically versatile Rhodococcus erythropolis LP27217 strain from oil spill lake.

Journal of hazardous materials, 496:139463 pii:S0304-3894(25)02379-9 [Epub ahead of print].

Isolating microorganisms from oil spill-contaminated environments is essential for advancing bioremediation strategies and discovering novel bioprocesses for hydrocarbon degradation. In this study, we report the isolation of a novel strain, Rhodococcus erythropolis LP27217, from Pertusillo Lake (Italy) on february 2017. Water samples were collected during an oil spill event and microbial community was previously characterized using 16S rRNA gene-targeted metagenomic analysis and functional prediction. The Rhodococcus genus was identified as the dominant member of this microbiome, and functional predictive analyses guided the isolation of the R. erythropolis LP27217 strain under various growth conditions, including the presence of hydrocarbons and in Liquid Microbial Fuel Cell (L-MFC) systems. This strain exhibits a versatile hydrocarbon-degrading and transforming metabolism, effectively addressing pollutants such as crude oil, polycyclic aromatic hydrocarbons (PAHs), and dibenzothiophene (DBT), even under psychrophilic conditions. Additionally, R. erythropolis LP27217 demonstrated the ability to produce lipopeptide biosurfactants and lipophilic polymers, with the latter being associated with the formation of an electrogenic hydrocarbonoclastic biofilm at the anoxic oil-water interface. Overall, this study demonstrated that R. erythropolis LP27217 is a promising candidate for sustainable applications, including in situ bioremediation of oil spills in lake ecosystems and the biosynthesis of innovative polymers and biosurfactants for biotechnological and environmental purposes. Furthermore, its ability to operate across oxic and hypoxic conditions, at the oil-water interface and within the water column, highlights a novel microbial mechanism with significant ecological and industrial potential.

RevDate: 2025-08-16
CmpDate: 2025-08-12

Dai Y, Qian Y, Qu Y, et al (2025)

Decoding longitudinal microbiome trajectories: an interpretable machine learning approach for biomarker discovery and prediction.

Briefings in bioinformatics, 26(4):.

Information generated from longitudinally sampled microbial data has the potential to illuminate important aspects of development and progression for many human conditions and diseases. Identifying microbial biomarkers and their time-varying effects can not only advance our understanding of pathogenetic mechanisms, but also facilitate early diagnosis and guide optimal timing of interventions. However, longitudinal predictive modeling of highly noisy and dynamic microbial data (e.g. metagenomics) poses analytical challenges.To overcome these challenges, we introduce a robust and interpretable machine-learning-based longitudinal microbiome analysis framework, LP-Micro, that encompasses (i) longitudinal microbial feature screening via a polynomial group lasso, (ii) disease outcome prediction implemented via machine learning methods (e.g. XGBoost, deep neural networks), and (iii) interpretable association testing between time points, microbial features, and disease outcomes via permutation feature importance. We demonstrate in simulations that LP-Micro can not only identify incident disease-related microbiome taxa, but also offers improved prediction accuracy compared with existing approaches. Applications of LP-Micro in two longitudinal microbiome studies with clinical outcomes of childhood dental disease and weight loss following bariatric surgery yield consistently high prediction accuracy. Moreover, LP-Micro highlights critical time points and associated microbial changes: oral microbial changes, including Streptococcus mutans, are most informative for predicting childhood dental disease at around 39 months of age, while gut microbial changes shortly after bariatric surgery strongly predict future weight loss. These findings are both informative and aligned with clinical expectations. The tool LP-Micro can be seen at https://github.com/IV012/LPMicro.

RevDate: 2025-08-16
CmpDate: 2025-08-12

El-Halim HMA, El-Hadidi M, Fouad N, et al (2025)

Metagenomic insight into drought-induced changes in the Egyptian wheat rhizosphere microbiome.

World journal of microbiology & biotechnology, 41(8):310.

Wheat is one of the most important cereal crops and an important source of food for billions of people worldwide. However, drought stress can pose a real threat to its productivity and lead to significant yield losses, especially in Egypt. The rhizospheric microbiome of wheat can play an important role in drought stress and help wheat to respond to this abiotic stress. Understanding this microbiome is therefore also important to improve drought stress resilience and productivity. In this study, a metagenomic analysis was performed to investigate how the composition and diversity of microbial communities associated with the wheat rhizosphere change under drought. Taxonomic and phylogenetic analyses revealed a shift in microbial abundance, with Actinobacteria, Bacteroidetes, Proteobacteria and Verrucomicrobia being the four most abundant phyla of the ethnic microbiota. Remarkably, other classes, including Alphaproteobacteria and Cytophagia, were significantly enriched under drought, which could be a promising enhancement of plant stress altruism. Differential abundance analysis showed that the control samples had higher abundance of microbial taxa such as OD1, WS2, Chlorobi, ABY1 and SHA-109 compared to the drought-treated genotypes. Functional prediction analysis using PICRUSt showed that an uncharacterized ATP-binding protein within the AAA + superfamily is overrepresented under drought conditions. This suggests that these genes may play a role in stress adaptation, possibly via energy-dependent regulation of cellular processes involved in plant survival. Our results expand our understanding of the complexity of responses of the wheat rhizosphere microbiome to drought and have practical implications for the development of microbial target combinations to improve wheat tolerance and productivity in the context of climate change challenges.

RevDate: 2025-08-14
CmpDate: 2025-08-12

Han W, Zhou Y, Wang Y, et al (2025)

Exploring fecal microbiota signatures associated with immune response and antibiotic impact in NSCLC: insights from metagenomic and machine learning approaches.

Frontiers in cellular and infection microbiology, 15:1591076.

BACKGROUND: Substantial interstudy heterogeneity in cancer immunotherapy-associated biomarkers has hindered their clinical applicability. To address this challenge, we performed a comprehensive integration of publicly available global metagenomic datasets. By leveraging metagenomic profiling and machine learning approaches, this study aimed to elucidate gut microbial signatures associated with immune response in lung cancer (LC) and to evaluate the modulatory effects of antibiotic exposure.

METHODS: A systematic literature search was conducted to identify relevant datasets, resulting in the inclusion of 209 fecal metagenomic samples: 154 baseline samples (45 responders, 37 non-responders, and 72 healthy controls) and 55 longitudinal samples collected during immunotherapy. We performed taxonomic and functional characterization of gut microbiota (GM) differentiating responders from non-responders, delineated microbiome dynamics during treatment, and assessed the impact of antibiotics on key microbial taxa. Among eight machine learning algorithms evaluated, the optimal model was selected to construct a predictive framework for immunotherapy response.

RESULTS: Microbial α-diversity was significantly elevated in responders compared to non-responders, with antibiotic administration further amplifying this difference-most notably at the species level. Integrative multi-omics analysis identified two pivotal microbial biomarkers, s_Bacteroides caccae and s_Prevotella copri, which were strongly associated with immunotherapy efficacy. A random forest-based classifier achieved robust predictive performance, with area under the curve (AUC) values of 0.82 and 0.79 at the species and genus levels, respectively. Notably, P. copri was further enriched in responders with poor progression-free survival (PFS <3 months), indicating a potential deleterious role. Antibiotic exposure significantly influenced the abundance and functional potential of these key taxa. KEGG-based functional analysis revealed the enrichment of amino acid metabolism pathways in responders. Additionally, CARD database annotation demonstrated that the majority of antibiotic resistance genes were associated with Bacteroidetes and Proteobacteria, implicating these taxa in shaping microbial-mediated therapeutic responses.

CONCLUSIONS: This study represents the first large-scale, cross-cohort integration of metagenomic data to identify reproducible GM signatures predictive of immune checkpoint inhibitor efficacy in LC. The findings not only underscore the prognostic relevance of specific taxa but also establish a foundation for developing microbiome-informed, personalized immunotherapeutic strategies.

RevDate: 2025-08-14
CmpDate: 2025-08-12

Ren Y, Zhang P, Yu H, et al (2025)

Metagenome-based characterization of the gut virome in patients with schizophrenia.

Journal of translational medicine, 23(1):895.

BACKGROUND: Schizophrenia (SCZ) is a multifactorial psychiatric disorder increasingly linked to gut microbial dysbiosis. While bacterial alterations have been widely studied, the role of the gut virome in SCZ remains largely unexplored. This study aimed to characterize the gut virome in SCZ and identify potential viral biomarkers associated with the disease.

METHODS: We analyzed fecal metagenomic data from 171 individuals (90 SCZ patients and 81 controls) using the Chinese Gut Virus Catalog (cnGVC). We assessed gut virome diversity, identified SCZ-associated vOTUs, explored virus-bacteria correlations, and evaluated diagnostic potential using random forest models. In addition, we examined follow-up samples from SCZ patients to assess the impact of antipsychotic treatment on the gut virome.

RESULTS: We identified 171 vOTUs that differed significantly between SCZ patients and controls, with 124 enriched in SCZ-mainly from Siphoviridae and Flandersviridae. Correlation analysis revealed altered virus-bacteria interactions in SCZ, including disease-specific associations with Akkermansia and Clostridia. A random forest classifier based on virome features achieved an AUC of 93.2%, outperforming the bacterial model. External validation using ASD and PD cohorts yielded lower AUCs (61.2-67.0%), suggesting disease specificity. In follow-up samples collected after three months of treatment, we observed partial changes in alpha diversity, while beta diversity remained stable, indicating that antipsychotic therapy may alter specific viral taxa without broadly reshaping the overall gut virome structure.

CONCLUSIONS: This study provides evidence of distinct gut virome alterations in SCZ and identifies specific viral markers with strong diagnostic potential. These findings highlight the underappreciated role of the gut virome in psychiatric disorders and support its utility as a non-invasive biomarker for SCZ diagnosis and future therapeutic development.

RevDate: 2025-08-15
CmpDate: 2025-08-11

Kiguchi Y, Hamamoto N, Kashima Y, et al (2025)

Giant extrachromosomal element "Inocle" potentially expands the adaptive capacity of the human oral microbiome.

Nature communications, 16(1):7397.

Survival strategy of bacteria is expanded by extrachromosomal elements (ECEs). However, their genetic diversity and functional roles for adaptability are largely unknown. Here, we discover a novel family of intracellular ECEs using 56 saliva samples by developing an efficient microbial DNA extraction method coupled with long-read metagenomics assembly. Even though this ECE family was not hitherto identified, our global prevalence analysis using 476 salivary metagenomic datasets elucidates that these ECEs reside in 74% of the population. These ECEs, which we named, "Inocles", are giant plasmid-like circular genomic elements of 395 kb in length, including Streptococcus as a host bacterium. Inocles encode a series of genes that contribute to intracellular stress tolerance, such as oxidative stress and DNA damage, and cell wall biosynthesis and modification involved in the interactions with oral epithelial cells. Moreover, Inocles exhibit significant positive correlations with immune cells and proteins responding to microbial infection in peripheral blood. Intriguingly, we examine and find their marked reductions among 68 patients of head and neck cancers and colorectal cancers, suggesting its potential usage for a novel biomarker of gastrointestinal cancers. Our results suggest that Inocles potentially boost the adaptive capacity of host bacteria against various stressors in the oral environment.

RevDate: 2025-08-14
CmpDate: 2025-08-11

Israel A, Israel S, Weizman A, et al (2025)

Atovaquone-proguanil and reduced digestive cancer risk: a Toxoplasma gondii connection.

Gut microbes, 17(1):2545412.

Emerging evidence suggests microbial pathogens contribute to digestive cancer risk. Atovaquone - proguanil (A-P), an antimalarial with antiparasitic activity, has been associated with a reduced risk of colorectal cancer (CRC). We conducted a retrospective cohort study using the TriNetX US Collaborative Network, including over 100,000 individuals aged 40-69 years who received A-P, matched 1:1 to controls who received other medications. Incident digestive cancers were analyzed using Cox proportional hazards models. Additionally, we performed a metagenomic analysis of 1,044 fecal samples from 156 individuals to assess the abundance of Toxoplasma gondii in CRC-associated microbiota. A-P use was associated with a significant reduction in digestive cancer incidence across all age groups: hazard ratios (HRs) ranged from 0.49 to 0.53 (all p < 0.001). Protective associations extended to pancreatic cancer (HR range, 0.50-0.72). In metagenomic analysis, T. gondii was the most discriminatory microbial species for CRC (p = 1.8 × 10[-16]), detected above threshold in 22.6% of CRC samples versus 1.6% of controls (odds ratio 18.2, 95% CI, 8.2-47.6, p = 2.3 × 10[-22]). These findings suggest T. gondii may be an overlooked microbial risk factor for digestive cancers, and that A-P may offer chemopreventive effects through antiparasitic activity. Prospective studies are needed to evaluate its preventive potential.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.

Timelines

ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.

Biographies

Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 28 JUL 2024 )